Data Sheet

FEATURES

Integrated ultralow noise synthesizer
8 differential 3.6 GHz LVPECL outputs and 1 LVPECL SYNC output or 2 CMOS SYNC outputs
$\mathbf{2}$ differential reference inputs and 1 single-ended reference input

APPLICATIONS

LTE and multicarrier GSM base stations
Clocking high speed ADCs, DACs
ATE and high performance instrumentation
$40 / 100 \mathrm{~Gb} / \mathrm{sec}$ OTN line side clocking
Cable/DOCSIS CMTS clocking

Test and measurement

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The AD9525 offers a dedicated output that can be used to provide a programmable signal for resetting or synchronizing a data converter. The output signal is activated by a SPI write.

The AD9525 is available in a 48-lead LFCSP and can be operated from a single 3.3 V supply. The external VCXO or VCO can have an operating voltage of up to 5.5 V .
The AD9525 operates over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Conditions 3
Supply Current. 3
Power Dissipation 3
REFA and REFB Input Characteristics 4
REFC Input Characteristics 4
Clock Inputs 5
PLL Characteristics 5
PLL Digital Lock Detect 6
Clock Outputs 6
Timing Characteristics 7
Clock Output Absolute Time Jitter (Clock Generation Using External 122.88 MHz VCXO) 8
Clock Output Absolute Time Jitter (Clock Generation Using External 1475 MHz VCO) 8
Clock Output Absolute Time Jitter (Clock Generation Using External 2.05 GHz VCO) 9
Clock Output Absolute Time Jitter (Clock Generation Using External 3 GHz VCO) 9
Clock Output Additive Phase Noise (Distribution Only; Clock Input to Distribution Output, Including VCO Divider) 9
$\overline{\text { PD, }} \overline{\text { RESET, and REF_SEL Pins }}$ 10
STATUS and REF_MON Pins 10
Serial Control Port 11
REVISION HISTORY
4/13-Rev. 0 to Rev. A
Changes to One Channel, One Driver and One Channel, Two Drivers Parameters, Table 3 4
Change to Figure 18 19
Changes to Register 0x01A, Table 28 31
Absolute Maximum Ratings 12
Thermal Resistance 12
ESD Caution 12
Pin Configuration and Function Descriptions 13
Typical Performance Characteristics. 15
Terminology 18
Detailed Block Diagram 19
Theory of Operation 20
Configuration of the PLL 20
Clock Distribution 23
SYNC_OUT 23
Reset Modes 25
Power-Down Modes 26
Serial Control Port 27
Pin Descriptions 27
General Operation of Serial Control Port 27
The Instruction Word (16 Bits) 28
MSB/LSB First Transfers 28
Control Registers 31
Control Register Map Overview 31
Register Map Descriptions 33
Applications Information 45
Frequency Planning Using the AD9525 45
Using the AD9525 Outputs for ADC Clock Applications 45
LVPECL Clock Distribution 46
SYNC_OUT Distribution 46
Outline Dimensions 47
Ordering Guide 47
Change to Register 0x000, Bit 6, Table 28 33
Changes to Table 35 38
Changes to Table 38 40
10/12-Revision 0: Initial Version

SPECIFICATIONS

Typical is given for VDD3 $=3.3 \mathrm{~V} \pm 5 \%$; VDD3 $\leq \mathrm{VDD}_{-} \mathrm{CP} \leq 5.25 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; OUT_RSET resistor $=4.12 \mathrm{k} \Omega$; CP_RSET resistor $($ CPRSET $)=$ $5.1 \mathrm{k} \Omega$, unless otherwise noted. Minimum and maximum values are given over full VDD3 and $\mathrm{T}_{\mathrm{A}}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ variation as listed in Table 1 . REFA at 122.88 MHz , CLKIN frequency $=2949.12 \mathrm{MHz}$.

CONDITIONS

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SUPPLY VOLTAGE					
VDD3		3.3		V	$3.3 \mathrm{~V} \pm 5 \%$
VDD_CP	VDD3		5.25	V	Nominally 3.3V to $5.0 \mathrm{~V} \pm 5 \%$
OUT_RSET PIN RESISTOR		4.12		k Ω	Sets internal biasing currents; connect to ground
CP_RSET PIN RESISTOR (CPRSET RESISTOR)		5.1		k Ω	Sets internal CP current range, nominally 4.8 mA (CP_LSB $=600 \mu \mathrm{~A}$); actual current calculated by CP_LSB $=3.06 /$ CPRSET, connect to ground; CPRSET range $=2.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$
TEMPERATURE RANGE, $\mathrm{T}_{\text {A }}$	-40	+25	+85	${ }^{\circ} \mathrm{C}$	

SUPPLY CURRENT

Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
SUPPLY CURRENT FOR VDD3 and VDD_CP PINS					$\mathrm{f}_{\mathrm{CLK}}=2949.12 \mathrm{MHz}$; REFA and REFB enabled at $122.88 \mathrm{MHz} ; R$ dividers $=2 ; M$ divider $=2$; PFD $=61.44 \mathrm{MHz}$; eight LVPECL outputs at 1474.56 MHz ; LVPECL 780 mV mode
VDD3 (Pin 3, Pin 36, Pin 41, Pin 46), Total Supply Voltage for Outputs		310	369	mA	Outputs terminated with 50Ω to VDD3-2V
VDD3 (Pin 9), Supply Voltage for M Divider, CLK Inputs and Distribution		98	107	mA	
VDD_CP (Pin 13), Supply Voltage for Charge Pump		6.6	7.6	mA	
VDD3 (Pin 20), Supply Voltage for PLL		53	63.4	mA	
VDD3 (Pin 32), Supply Voltage for SYNC_OUT		45	54	mA	

POWER DISSIPATION

Table 3.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER DISSIPATION, CHIP					Does not include power dissipated in external resistors; all LVPECL outputs terminated with 50Ω to VDD3 - 2 V ; LVPECL 780 mV mode
Power-On Default		782	871	mW	No programming; default register values
Typical Operation 1		1.15	1.23	W	$\mathrm{f}_{\text {CLK }}=2949.12 \mathrm{MHz}$; REFA and REFB enabled at $122.88 \mathrm{MHz} ; R$ dividers $=2 ; M$ divider $=2$; PFD $=61.44 \mathrm{MHz}$; eight LVPECL outputs at 1474.56 MHz
Typical Operation 2		1.17	1.25	W	$\mathrm{f}_{\mathrm{CLK}}=2949.12 \mathrm{MHz}$; PLL on; REFA enabled at $122.88 \mathrm{MHz} ; \mathrm{M}$ divider $=1 ; \mathrm{PFD}=122.88 \mathrm{MHz}$; eight LVPECL outputs at 2949.12 MHz
$\overline{\text { PD Power-Down }}$		51	56.4	mW	$\overline{\mathrm{PD}}$ pin pulled low
$\overline{\text { PD }}$ Power-Down, Maximum Sleep		13.2	19.1	mW	$\overline{\mathrm{PD}}$ pin pulled low; power-down distribution reference, Reg. 0x230[1] = 1b; note that powering down distribution reference disables safe powerdown mode (see Power-Down Modes section)
VDD_CP Supply		22	25	mW	PLL operating; typical closed-loop configuration

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER DELTAS, INDIVIDUAL FUNCTIONS					Power delta when a function is enabled/disabled
M Divider On/Off		5	8.7	mW	M divider bypassed
P Divider On/Off		3	5.7	mW	P divider bypassed
B Divider On/Off	16	23.1	mW	B divider bypassed REFB On	15
PLL On/Off	254	300.5	mW		
Delta from powering down REFB differential input	PLL off to PLL on, normal operation; no reference enabled				
One Channel, One Driver		107	132	mW	No LVPECL output on to one LVPECL output on at 2949.12 MHz; same output pair
One Channel, Two Drivers	184	233	mW	No LVPECL output on to two LVPECL outputs on at 2949.12 MHz; same output pair	

REFA AND REFB INPUT CHARACTERISTICS

Table 4.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DIFFERENTIAL MODE (REFA, $\overline{\mathrm{REFA}} ; \mathrm{REFB}, \overline{\mathrm{REFB}})$					Differential mode (can accommodate singleended input by ac grounding unused input)
Input Frequency	0		500	MHz	Frequencies below $\sim 1 \mathrm{MHz}$ should be dc-coupled; be careful to match self-bias voltage
Input Sensitivity	200			mV p-p	Frequency at 122.88 MHz
Self-Bias Voltage, REFA and REFB	1.52	1.65	1.78	V	Self-bias voltage of REFA and REFB inputs ${ }^{1}$
Self-Bias Voltage, $\overline{\text { REFA }}$ and $\overline{\text { REFB }}$	1.38	1.50	1.61	V	Self-bias voltage of $\overline{\mathrm{REFA}}$ and $\overline{\mathrm{REFB}}$ inputs ${ }^{1}$
Input Resistance, REFA and REFB	4.5	4.7	4.9	$\mathrm{k} \Omega$	Self-biased ${ }^{1}$
Input Resistance, $\overline{\text { REFA }}$ and $\overline{\text { REFB }}$	4.9	5.2	5.4	$\mathrm{k} \Omega$	Self-biased ${ }^{1}$
DUTY CYCLE					Duty cycle bounds are set by pulse width high and pulse width low
Pulse Width Low	500			ps	
Pulse Width High	500			ps	

${ }^{1}$ The differential pairs of REFA and $\overline{\text { REFA }}$, REFB and $\overline{\text { EFFB }}$ self-bias points are offset slightly to avoid chatter on an open input condition.

REFC INPUT CHARACTERISTICS

Table 5.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
REFC INPUT					
Input Frequency Range			300	MHz	DC-coupled input (not self-biased)
Input High Voltage	2.0			V	
Input Low Voltage			0.8	V	
Input Current		1		$\mu \mathrm{A}$	
Duty Cycle					Duty cycle bounds are set by pulse width high and pulse width low
Pulse Width Low	1			ns	
Pulse Width High	1			ns	

CLOCK INPUTS

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Input Frequency	0		3.6	GHz	Frequencies below $\sim 1 \mathrm{MHz}$ should be dc-coupled; be careful to match self-bias voltage
Input Sensitivity	150			mVp-p	Measured at 3.1 GHz
Input Level			2	$\checkmark \mathrm{p}$-p	Larger voltage swings can turn on the protection diodes and can degrade jitter performance
Input Common-Mode Voltage, $\mathrm{V}_{\text {CM }}$	1.55	1.64	1.74	V	Self-biased; enables ac coupling
Input Common-Mode Range, V cmi $^{\text {cma }}$	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled
Input Resistance	6.7	7	7.4	k Ω	Self-biased
Input Capacitance		2		pF	

PLL CHARACTERISTICS

Table 7.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Min \& Typ \& Max \& Unit \& Test Conditions/Comments \\
\hline PHASE/FREQUENCY DETECTOR (PFD) PFD Input Frequency \& \& \& \[
\begin{aligned}
\& 125 \\
\& 45
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{MHz} \\
\& \mathrm{MHz}
\end{aligned}
\] \& \begin{tabular}{l}
Antibacklash pulse width \(=1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}\) \\
Antibacklash pulse width \(=6.0 \mathrm{~ns}\)
\end{tabular} \\
\hline \begin{tabular}{l}
CHARGE PUMP (CP) \\
Icp Sink/Source \\
High Value \\
Low Value \\
Absolute Accuracy \\
CPRSET Range \\
Icp High Impedance Mode Leakage Sink-and-Source Current Matching \(I_{\text {cp Vs. }}\) VCP \\
Icp vs. Temperature
\end{tabular} \& 4.5
0.57

2.7 \& | 4.9 |
| :--- |
| 0.61 |
| 2.5 |
| 3.5 |
| 2 |
| 1.5 |
| 2 | \& 5.4

0.67

10 \& $$
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA} \\
& \% \\
& \mathrm{k} \Omega \\
& \mu \mathrm{~A} \\
& \% \\
& \% \\
& \%
\end{aligned}
$$ \& ```

VDD_CP (Pin 13); V ${ }_{C P}$ is the voltage of the charge pump pin
(CP, Pin 14)
Programmable
With CPRSET $=5.1 \mathrm{k} \Omega$; higher I_{cP} is possible by changing
CPRSET; V ${ }_{C P}=$ VDD_CP/2 V
With CPRSET $=5.1 \mathrm{k} \Omega$; lower Icp is possible by changing
CPRSET, $\mathrm{V}_{\mathrm{CP}}=\mathrm{VDD}$ _CP/2 V
$\mathrm{V}_{\mathrm{CP}}=\mathrm{VDD}$ _CP/2 V
VDD_CP $=5 \mathrm{~V}$
$0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CP}}<\mathrm{VDD}_{2} \mathrm{CP}-0.5 \mathrm{~V}$
$0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CP}}<\mathrm{VDD}_{\mathrm{CP}}-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CP}}=\mathrm{VDD}$ _CP/2 V

``` \\
\hline ```
P DIVIDER (PART OF N DIVIDER)
    Input Frequency P = 1
    Input Frequency P = 2
    Input Frequency P = 3
    Input Frequency P = 4
    Input Frequency P = 5
    Input Frequency P = 6
``` & & & \[
\begin{aligned}
& 1500 \\
& 3000 \\
& 3600 \\
& 3600 \\
& 3600 \\
& 3600
\end{aligned}
\] & \begin{tabular}{l}
MHz \\
MHz \\
MHz \\
MHz \\
MHz \\
MHz
\end{tabular} & \\
\hline B DIVIDER (PART OF N DIVIDER) Input Frequency & & & 1500 & MHz & B counter input frequency (N Divider input frequency divided by P) \\
\hline M DIVIDER Input Frequency & & & 3600 & MHz & \\
\hline \begin{tabular}{l}
NOISE CHARACTERISTICS \\
In-Band Phase Noise of the Charge Pump/ Phase Frequency Detector (In-Band Means Within the LBW of the PLL) \\
At 61.44 MHz PFD Frequency \\
At 122.88 MHz PFD Frequency \\
PLL Figure of Merit (FOM)
\end{tabular} & & \[
\begin{aligned}
& -144 \\
& -141 \\
& -222
\end{aligned}
\] & & \begin{tabular}{l}
\(\mathrm{dBc} / \mathrm{Hz}\) \\
\(\mathrm{dBc} / \mathrm{Hz}\) \\
\(\mathrm{dBc} / \mathrm{Hz}\)
\end{tabular} & \begin{tabular}{l}
PLL in-band phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting \(20 \log (N)\) (where \(N\) is the value of the \(N\) divider) \\
Reference slew rate \(>0.25 \mathrm{~V} / \mathrm{ns}\); FOM \(+10 \log \left(\mathrm{f}_{\text {PFD }}\right)\) is an approximation of the PFD/CP in-band phase noise (in the flat region) inside the PLL loop bandwidth; when running closed loop, the phase noise, as observed at the VCO output, is increased by \(20 \log (\mathrm{~N})\)
\end{tabular} \\
\hline
\end{tabular}

\section*{PLL DIGITAL LOCK DETECT}

Table 8.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline PLL DIGITAL LOCK DETECT WINDOW \({ }^{1}\) & & & & & Signal available at the STATUS and REF_MON pins when selected by appropriate register settings; lock detect window settings can be varied by changing the CPRSET resistor \\
\hline Lock Threshold (Coincidence of Edges) & & & & & Selected by Reg. \(0 \times 010[1: 0\)] and Reg. \(0 \times 019[1]\), which is the threshold for transitioning from unlock to lock \\
\hline Low Range (ABP \(1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}\)) & & 4 & & ns & Reg. \(0 \times 010[1: 0]=00 b, 01 b, 11 \mathrm{~b}\); Reg. \(0 \times 019[1]=1 \mathrm{~b}\) \\
\hline High Range (ABP \(1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}\)) & & 7 & & ns & Reg. \(0 \times 010[1: 0]=00 b, 01 b, 11 b ;\) Reg. \(0 \times 019[1]=0 b\) \\
\hline High Range (ABP 6.0 ns) & & 3.5 & & ns & Reg. \(0 \times 010[1: 0]=10 b ;\) Reg. \(0 \times 019[1]=0 b\) \\
\hline Unlock Threshold (Hysteresis) \({ }^{1}\) & & & & & Selected by Reg. \(0 \times 017\) [1:0] and Reg. \(0 \times 019[1]\), which is the threshold for transitioning from unlock to lock \\
\hline Low Range (ABP \(1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}\)) & & 8.3 & & ns & Reg. \(0 \times 010[1: 0]=00 b, 01 \mathrm{~b}, 11 \mathrm{~b}\); Reg. \(0 \times 019[1]=1 \mathrm{~b}\) \\
\hline High Range (ABP \(1.3 \mathrm{~ns}, 2.9 \mathrm{~ns}\)) & & 16.9 & & ns & Reg. \(0 \times 010[1: 0]=00 b, 01 b, 11 b\); Reg. \(0 \times 019[1]=0 b\) \\
\hline High Range (ABP 6.0 ns) & & 11 & & ns & Reg. \(0 \times 010[1: 0]=10 b ;\) Reg. \(0 \times 019[1]=0 b\) \\
\hline
\end{tabular}
\({ }^{1}\) For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.

\section*{CLOCK OUTPUTS}

Table 9.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline \multicolumn{6}{|l|}{LVPECL CLOCK OUTPUTS} \\
\hline Output Frequency, Maximum & \multirow[t]{2}{*}{3.6} & \multirow{3}{*}{105} & \multirow{3}{*}{162} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{GHz} \\
& \mathrm{ps}
\end{aligned}
\]} & \\
\hline Rise Time/Fall Time (20\% to 80\%) & & & & & \\
\hline Duty Cycle & & & & & Input duty cycle \(=50 / 50\) \\
\hline \(\mathrm{M}=1\) & 47 & 50 & 53 & \% & FOUT \(=2800 \mathrm{MHz}\) \\
\hline & 45 & 50 & 55 & \% & FOUT < 3000 MHz \\
\hline \(\mathrm{M}=2,4,6\) & 47 & 49 & 51 & \% & FOUT \(=1400 \mathrm{MHz}\) \\
\hline & 45 & 49 & 55 & \% & FOUT < 1500 MHz \\
\hline \(M=3,5\) & 32 & 32 & 33 & \% & FOUT \(=933.33 \mathrm{MHz}\) \\
\hline Output Differential Voltage, Magnitude & 750 & 830 & 984 & mV & Voltage across pins, output driver static; Termination \(=50 \Omega\) to VDD3-2V \\
\hline Common-Mode Output Voltage & \[
\begin{aligned}
& \text { VDD3 - } \\
& 1.42
\end{aligned}
\] & \[
\begin{aligned}
& \text { VDD3 - } \\
& 1.37
\end{aligned}
\] & \[
\begin{aligned}
& \text { VDD3- } \\
& 1.32
\end{aligned}
\] & V & Output driver static; VDD3 (Pin 3, Pin 36, Pin 41, Pin 46); Termination \(=50 \Omega\) to VDD3-2V \\
\hline
\end{tabular}

\section*{Data Sheet}

\section*{TIMING CHARACTERISTICS}

Table 10.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline \begin{tabular}{l}
PROPAGATION DELAY, tpecl, CLKIN TO LVPECL OUTPUT \\
For All M Divider Values Variation with Temperature
\end{tabular} & 461 & \[
\begin{aligned}
& 522 \\
& 388
\end{aligned}
\] & 600 & ps \(\mathrm{fs} /{ }^{\circ} \mathrm{C}\) & \begin{tabular}{l}
Termination as shown in Figure 35 \\
High frequency clock distribution configuration
\end{tabular} \\
\hline \begin{tabular}{l}
OUTPUT SKEW, LVPECL OUTPUTS¹ \\
All LVPECL Outputs \\
Temperature Coefficient All LVPECL Outputs Across Multiple Parts
\end{tabular} & & & \[
\begin{aligned}
& 25.2 \\
& 144
\end{aligned}
\] & ps \(\mathrm{fs} /{ }^{\circ} \mathrm{C}\) ps & Across temperature and VDD per device \\
\hline \begin{tabular}{l}
OUTPUT SKEW, LVPECL-TO-SYNC_OUT \({ }^{1}\) \\
SYNC_OUT LVPECL Mode \\
All LVPECL Outputs \\
Temperature Coefficient \\
All LVPECL Outputs Across Multiple Parts \\
SYNC_OUT CMOS Mode \\
All LVPECL Outputs \\
All LVPECL Outputs Across Multiple Parts
\end{tabular} & & 189
543

1.64 & \[
\begin{aligned}
& 298 \\
& 417 \\
& 2.34 \\
& 2.46
\end{aligned}
\] & \begin{tabular}{l}
ps \(\mathrm{fs} /{ }^{\circ} \mathrm{C}\) ps \\
ns ns
\end{tabular} & \begin{tabular}{l}
Across temperature and VDD per device \\
Across temperature and VDD per device
\end{tabular} \\
\hline PROPAGATION DELAY, REF TO LVPECL OUTPUT & 267 & 581 & 924 & ps & REF refers to either REFA/ \(\overline{\text { REFA }}\) or REFB/ \(\overline{\text { REFB }}\) pairs \\
\hline
\end{tabular}
\({ }^{1}\) The output skew is the difference between any two paths while operating at the same voltage and temperature.

\section*{Timing Diagrams}

Figure 2. CLK/ \(\overline{C L K}\) to Clock Output Timing, M Divider \(=1\)

Figure 3. LVPECL Timing, Differential

\section*{CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL 122.88 MHZ VCXO)}

Table 11.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline LVPECL OUTPUT ABSOLUTE TIME JITTER & & & & & Application example based on a typical setup using an external 122.88 MHz VCXO (Crystek CVHD-950); reference \(=122.88 \mathrm{MHz}\); R divider \(=1 ;\) LBW \(=40 \mathrm{~Hz}\) \\
\hline FOUT \(=122.88 \mathrm{MHz}\) & & 107 & & fs rms & Integration \(\mathrm{BW}=1 \mathrm{kHz}\) to 40 MHz \\
\hline & & 69 & & fs rms & Integration \(\mathrm{BW}=12 \mathrm{kHz}\) to 20 MHz \\
\hline FOUT \(=61.44 \mathrm{MHz}\) & & 108 & & fs rms & Integration \(\mathrm{BW}=1 \mathrm{kHz}\) to 20 MHz \\
\hline & & 107 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline
\end{tabular}

\section*{CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL 1475 MHZ VCO)}

Table 12.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline LVPECL OUTPUT ABSOLUTE TIME JITTER & & & & & Application example based on a typical setup using an external 1475 MHz VCO (Bowei Model MVCO-1475); reference \(=122.88 \mathrm{MHz}\); R divider \(=1\); PLL LBW \(=18 \mathrm{kHz}\) \\
\hline FOUT \(=1474.56 \mathrm{MHz}\) & & 99 & & fs rms & Integration \(\mathrm{BW}=1 \mathrm{kHz}\) to 100 MHz \\
\hline & & 77 & & fs rms & Integration BW \(=10 \mathrm{kHz}\) to 100 MHz \\
\hline & & 74 & & fs rms & Integration BW = 10 kHz to 40 MHz \\
\hline & & 68 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline Reference Sideband Spurs & & -93 & & dBc & \(\pm 122.88 \mathrm{MHz}\) \\
\hline FOUT \(=245.76 \mathrm{MHz}\) & & 104 & & fs rms & Integration BW \(=1 \mathrm{kHz}\) to 100 MHz \\
\hline & & 87 & & fs rms & Integration BW \(=10 \mathrm{kHz}\) to 100 MHz \\
\hline & & 75 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline Reference Sideband Spurs & & -98 & & dBc & \(\pm 122.88 \mathrm{MHz}\) \\
\hline
\end{tabular}

Table 13.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline LVPECL OUTPUT ABSOLUTE TIME JITTER & & & & & Application example based on a typical setup using an external 1475 MHz VCO (Z-Communications CRO1474-LF); reference \(=122.88 \mathrm{MHz} ;\) R divider \(=1\); PLL LBW \(=8 \mathrm{kHz}\) \\
\hline FOUT \(=1474.56 \mathrm{MHz}\) & & 72 & & fs rms & Integration \(\mathrm{BW}=1 \mathrm{kHz}\) to 100 MHz \\
\hline & & 40 & & fs rms & Integration \(\mathrm{BW}=10 \mathrm{kHz}\) to 100 MHz \\
\hline & & 33 & & fs rms & Integration BW \(=10 \mathrm{kHz}\) to 40 MHz \\
\hline & & 28 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline Reference Sideband Spurs & & -94 & & dBC & \(\pm 122.88 \mathrm{MHz}\) \\
\hline FOUT \(=245.76 \mathrm{MHz}\) & & 83 & & fs rms & Integration BW \(=1 \mathrm{kHz}\) to 100 MHz \\
\hline & & 61 & & fs rms & Integration BW \(=10 \mathrm{kHz}\) to 40 MHz \\
\hline & & 46 & & fs rms & Integration BW \(=12 \mathrm{kHz}\) to 20 MHz \\
\hline Reference Sideband Spurs & & -93 & & dBC & \(\pm 122.88 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL 2.05 GHZ VCO)}

Table 14.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline LVPECL OUTPUT ABSOLUTE TIME JITTER & & & & & Application example based on a typical setup using an external 2.05 MHz VCO (Bowei Model MVCO2050A); reference \(=122.054215 \mathrm{MHz}\); R divider \(=12\); PLL LBW \(=5 \mathrm{kHz}\) \\
\hline FOUT \(=2048.867 \mathrm{MHz}\) & & 19 & & fs rms & Integration BW \(=200 \mathrm{kHz}\) to 5 MHz \\
\hline & & 21 & & fs rms & Integration BW \(=200 \mathrm{kHz}\) to 10 MHz \\
\hline & & 87 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline Reference Sideband Spurs & & -105 & & dBC & \(\pm 10.671 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL 3 GHZ VCO)}

Table 15.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline LVPECL OUTPUT ABSOLUTE TIME JITTER & & & & & Application example based on a typical setup using an external 2950 MHz VCO (Z-Communications Model CRO-2950); reference \(=122.88 \mathrm{MHz} ; \mathrm{R}\) divider \(=1\) \\
\hline FOUT \(=2949.12 \mathrm{MHz}\); PLL LBW \(=7 \mathrm{kHz}\) & & 63 & & fs rms & Integration BW = 1 kHz to 100 MHz \\
\hline & & 38 & & fs rms & Integration BW \(=10 \mathrm{kHz}\) to 100 MHz \\
\hline & & 34 & & fs rms & Integration BW = 10 kHz to 40 MHz \\
\hline & & 28 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline Reference Sideband Spurs & & -99 & & dBc & \(\pm 122.88 \mathrm{MHz}\) \\
\hline FOUT \(=1474.56 \mathrm{MHz} ;\) PLL LBW \(=7 \mathrm{kHz}\) & & 62 & & fs rms & Integration BW = 1 kHz to 100 MHz \\
\hline & & 36 & & fs rms & Integration BW \(=10 \mathrm{kHz}\) to 100 MHz \\
\hline & & 31 & & fs rms & Integration BW = 10 kHz to 40 MHz \\
\hline & & 25 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline Reference Sideband Spurs & & -100 & & dBc & \(\pm 122.88 \mathrm{MHz}\) \\
\hline FOUT \(=491.52 \mathrm{MHz}\); PLL LBW \(=7 \mathrm{kHz}\) & & 78 & & fs rms & Integration BW = 1 kHz to 100 MHz \\
\hline & & 60 & & fs rms & Integration BW \(=10 \mathrm{kHz}\) to 100 MHz \\
\hline & & 44 & & fs rms & Integration BW = 10 kHz to 40 MHz \\
\hline & & 33 & & fs rms & Integration BW = 12 kHz to 20 MHz \\
\hline Reference Sideband Spurs & & -96 & & dBc & \(\pm 122.88 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{CLOCK OUTPUT ADDITIVE PHASE NOISE (DISTRIBUTION ONLY; CLOCK INPUT TO DISTRIBUTION OUTPUT, INCLUDING VCO DIVIDER)}

Table 16.
\begin{tabular}{l|ll|l|l}
\hline Parameter & Min & Typ \(\quad\) Max & Unit & Test Conditions/Comments \\
\hline CLK-TO-LVPECL ADDITIVE PHASE NOISE & & & & Distribution section only; does not include PLL and VCO \\
CLK = 2949.12 MHz, FOUT = 2949.12 MHz & & & & \\
Divider \(=1\) & & & \\
At 10 Hz Offset & -112 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 100 Hz Offset & -122 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 1 kHz Offset & -133 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 10 kHz Offset & -141 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 100 kHz Offset & -146 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 800 kHz Offset & -148 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 1 MHz Offset & -148 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 10 MHz Offset & -149 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
At 100 MHz Offset & -151 & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline CLK \(=1474.56 \mathrm{MHz}\), \(\mathrm{FOUT}=1474.56 \mathrm{MHz}\) & & & & & \\
\hline Divider \(=1\) & & & & & \\
\hline At 10 Hz Offset & & -114 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 100 Hz Offset & & -125 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 1 kHz Offset & & -134 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 10 kHz Offset & & -144 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 100 kHz Offset & & -149 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 800 kHz Offset & & -151 & & \(\mathrm{dBC} / \mathrm{Hz}\) & \\
\hline At 1 MHz Offset & & -151 & & \(\mathrm{dBC} / \mathrm{Hz}\) & \\
\hline At 10 MHz Offset & & -154 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline CLK \(=122.88 \mathrm{MHz}\), FOUT \(=122.88 \mathrm{MHz}\) & & & & & \\
\hline Divider \(=1\) & & & & & \\
\hline At 10 Hz Offset & & -134 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 100 Hz Offset & & -145 & & \(\mathrm{dBC} / \mathrm{Hz}\) & \\
\hline At 1 kHz Offset & & -153 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 10 kHz Offset & & -159 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 100 kHz Offset & & -161 & & \(\mathrm{dBc} / \mathrm{Hz}\) & \\
\hline At 800 kHz Offset & & -161 & & \(\mathrm{dBC} / \mathrm{Hz}\) & \\
\hline At 1 MHz Offset & & -161 & & \(\mathrm{dBC} / \mathrm{Hz}\) & \\
\hline At 10 MHz Offset & & -161 & & \(\mathrm{dBC} / \mathrm{Hz}\) & \\
\hline
\end{tabular}

\section*{\(\overline{\text { PD }}, \overline{\text { RESET }}\), AND REF_SEL PINS}

Table 17.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline INPUT CHARACTERISTICS & & & & & \\
\hline Logic 1 Voltage & 2.0 & & & V & \\
\hline Logic 0 Voltage & & & 0.8 & V & \\
\hline Logic 1 Current & & 1 & & \(\mu \mathrm{A}\) & \\
\hline Logic 0 Current \(\overline{\mathrm{PD}}, \overline{\mathrm{RESET}}\) & & -112 & & \(\mu \mathrm{A}\) & The minus sign indicates that current is flowing out of \\
\hline Logic 0 Current REF_SEL & & 1 & & \(\mu \mathrm{A}\) & \\
\hline Capacitance & & 2 & & pF & \\
\hline RESET TIMING & & & & & \\
\hline Pulse Width Low & 50 & & & ns & \\
\hline \(\overline{\text { RESET Inactive to Start of Register }}\) Programming & 100 & & & ns & \\
\hline
\end{tabular}

\section*{STATUS AND REF_MON PINS}

Table 18.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline OUTPUT CHARACTERISTICS Output Voltage High, Voн Output Voltage Low, Vol & 2.7 & & 0.4 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] & 1 mA output load \\
\hline MAXIMUM TOGGLE RATE & & 200 & & MHz & Applies when mux is set to any divider or counter output or PFD up/down pulse; usually debug mode only; beware that spurs can couple to output when any of these pins is toggling \\
\hline
\end{tabular}

AD9525

\section*{SERIAL CONTROL PORT}

Table 19.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Min & Typ & Max & Unit & Test Conditions/Comments \\
\hline \begin{tabular}{l}
\(\overline{\overline{C S}}\) (INPUT) \\
Input Logic 1 Voltage Input Logic 0 Voltage Input Logic 1 Current Input Logic 0 Current Input Capacitance
\end{tabular} & 2.0 & \begin{tabular}{l}
\[
-112
\] \\
2
\end{tabular} & \[
\begin{aligned}
& 0.8 \\
& 2.5
\end{aligned}
\] & \begin{tabular}{l}
V \\
V \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
pF
\end{tabular} & \begin{tabular}{l}
\(\overline{\mathrm{CS}}\) has an internal \(30 \mathrm{k} \Omega\) pull-up resistor \\
The minus sign indicates that current is flowing out of the AD9525, which is due to the internal pull-up resistor
\end{tabular} \\
\hline SCLK (INPUT) Input Logic 1 Voltage Input Logic 0 Voltage Input Logic 1 Current Input Logic 0 Current Input Capacitance & 2.0 & \begin{tabular}{l}
\[
112
\] \\
2
\end{tabular} & \begin{tabular}{l}
\[
0.8
\] \\
1
\end{tabular} & \begin{tabular}{l}
V \\
V \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
pF
\end{tabular} & SCLK has an internal \(30 \mathrm{k} \Omega\) pull-down resistor \\
\hline SDIO (WHEN INPUT) Input Logic 1 Voltage Input Logic 0 Voltage Input Logic 1 Current Input Logic 0 Current Input Capacitance & 2.0 & \[
\begin{aligned}
& 10 \\
& 20 \\
& 2
\end{aligned}
\] & 0.8 & \begin{tabular}{l}
V \\
V \\
nA \\
nA \\
pF
\end{tabular} & \\
\hline SDIO, SDO (OUTPUTS) Output Logic 1 Voltage Output Logic 0 Voltage & 2.7 & & 0.4 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] & 1 mA load current \\
\hline \begin{tabular}{l}
TIMING \\
Clock Rate (SCLK, 1/tscık) \\
Pulse Width High, \(\mathrm{t}_{\text {HIGH }}\) \\
Pulse Width Low, tıow SDIO to SCLK Setup, tDs SCLK to SDIO Hold, toh SCLK to Valid SDIO and SDO, tov \(\overline{\mathrm{CS}}\) to SCLK Setup and Hold, \(\mathrm{t}_{\text {s, }} \mathrm{t}_{\mathrm{H}}\) \(\overline{\mathrm{CS}}\) Minimum Pulse Width High, tpwh
\end{tabular} & \[
\begin{aligned}
& 16 \\
& 16 \\
& 2 \\
& 1.1 \\
& 2 \\
& 2.6
\end{aligned}
\] & & 31

12 & \begin{tabular}{l}
MHz \\
ns \\
ns \\
ns \\
ns \\
ns \\
ns \\
ns
\end{tabular} & \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}

Table 20.
\begin{tabular}{|c|c|}
\hline Parameter & Rating \\
\hline VDD3 to GND & -0.3 V to +3.6 V \\
\hline VDD_CP, CP to GND & -0.3 V to +5.8 V \\
\hline REFA, \(\overline{R E F A}\), REFB, \(\overline{\text { REFB }}\), REFC to GND & -0.3 V to VDD3 +0.3 V \\
\hline OUT_RSET to GND & -0.3 V to VDD3 +0.3 V \\
\hline CP_RSET to GND & -0.3 V to VDD3 +0.3 V \\
\hline CLKIN, \(\overline{\text { CLKIN }}\) to GND & -0.3 V to VDD3 +0.3 V \\
\hline CLKIN to \(\overline{\text { CLKIN }}\) & -1.2 V to +1.2 V \\
\hline SCLK, SDIO, SDO, \(\overline{C S}\) to GND & -0.3 V to VDD3 +0.3 V \\
\hline OUT0, \(\overline{\text { OUT0, OUT1, } \overline{\text { OUT1 }}, \text { OUT2, } \overline{\text { OUT2 }} \text {, }}\) OUT3, \(\overline{\text { OUT3, OUT4, OUT4, OUT5, } \overline{\text { OUT5 }} \text {, }}\) OUT6, OUT6, OUT7, OUT7, SYNC_OUT, SYNC_OUT to GND & -0.3 V to VDD3 +0.3 V \\
\hline \(\overline{\mathrm{RESET}}, \overline{\mathrm{PD}}\), STATUS, REF_MON to GND & -0.3 V to VDD3 +0.3 V \\
\hline Junction Temperature \({ }^{1}\) & \(150^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (10 sec) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) See Table 21 for \(\theta_{\mathrm{JA}}\).
}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{THERMAL RESISTANCE}

Table 21. Thermal Resistance (Simulated)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Package Type & Airflow Velocity (m/sec) & \(\theta_{\text {JA }}{ }^{1,2}\) & \(\theta_{\text {Jc }}{ }^{1,3}\) & \(\boldsymbol{\theta}_{\mathbf{B B}}{ }^{1,4}\) & \(\Psi_{\text {JT }}{ }^{1,2}\) & Unit \\
\hline \multirow[t]{3}{*}{48-Lead LFCSP} & 0 & 27.3 & \multirow[t]{3}{*}{2.1} & \multirow[t]{3}{*}{14.7} & 0.2 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline & 1.0 & 23.9 & & & 0.3 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline & 2.5 & 21.4 & & & 0.4 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}
\({ }^{1}\) Per JEDEC 51-7, plus JEDEC 51-5 2S2P test board.
\({ }^{2}\) Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
\({ }^{3}\) Per MIL-Std 883, Method 1012.1.
\({ }^{4}\) Per JEDEC JESD51-8 (still air).

\section*{ESD CAUTION}
\begin{tabular}{l|l}
\hline & \begin{tabular}{l}
ESD (electrostatic discharge) sensitive device. \\
Charged devices and circuit boards can discharge \\
without detection. Although this product features \\
patented or proprietary protection circuitry, damage \\
may occur on devices subjected to high energy ESD. \\
Therefore, proper ESD precautions should be taken to \\
avoid performance degradation or loss of functionality.
\end{tabular} \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION AND FUNCTION DESCRIPTIONS}

NOTES
1. THE EXPOSED PAD IS A GROUND CONNECTION ON THE CHIP THAT MUST BE SOLDERED TO THE ANALOG GROUND OF THE PCB TO ENSURE PROPER FUNCTIONALITY AND HEAT DISSIPATION, NOISE, AND MECHANICAL STRENGTH BENEFITS.

Figure 4. Pin Configuration
Table 22. Pin Function Descriptions
\begin{tabular}{|c|c|c|c|}
\hline Pin No. & Mnemonic & Type & Description \\
\hline 1 & \(\overline{\text { OUT1 }}\) & O & LVPECL Complementary Output 1. \\
\hline 2 & OUT1 & 0 & LVPECL Output 1. \\
\hline 3 & VDD3 & P & 3.3 V Power Supply for Channel OUT0 and Channel OUT1. \\
\hline 4 & OUT0 & O & LVPECL Complementary Output 0. \\
\hline 5 & OUTO & 0 & LVPECL Output 0. \\
\hline 6 & OUT_RSET & 0 & Clock Distribution Current Set Resistor. Connect a \(4.12 \mathrm{k} \Omega\) resistor from this pin to GND. \\
\hline 7 & CLKIN & I & Along with \(\overline{\mathrm{CLKIN}}\), this pin is the differential input for the clock distribution section. \\
\hline 8 & \(\overline{\text { CLKIN }}\) & I & Along with CLKIN, this pin is the differential input for the clock distribution section. If a single-ended input is connected to the CLKIN pin, connect a \(0.1 \mu \mathrm{~F}\) bypass capacitor from \(\overline{\mathrm{CLKIN}}\) to ground. \\
\hline 9 & VDD3 & P & 3.3 V Power Supply for CLK Inputs, M Divider, and Output Distribution. \\
\hline 10 & STATUS & O & Lock Detect and Other Status Signals. \\
\hline 11 & REFC & I & Reference Clock Input C. This pin is a CMOS input for the PLL reference. \\
\hline 12 & REF_SEL & 1 & Reference Input Select. Logic high = REFB. No internal pull-up or pull-down resistor on this pin. \\
\hline 13 & VDD_CP & P & Power Supply for Charge Pump (CP).VDD3 < VDD_CP < 5.0 V.VDD_CP must still be connected to 3.3 V if the PLL is not used. \\
\hline 14 & CP & 0 & Charge Pump (Output). This pin connects to an external loop filter. This pin can be left unconnected if the PLL is not used. \\
\hline 15 & GND & GND & Ground for Charge Pump VDD_CP Supply. Connect to ground. \\
\hline 16 & CP_RSET & 0 & Charge Pump Current Set Resistor. Connect a \(5.1 \mathrm{k} \Omega\) resistor from this pin to GND. This resistor can be omitted if the PLL is not used. \\
\hline 17 & REFA & I & Reference Clock Input A. Along with \(\overline{\text { REFA, }}\), this pin is the differential input for the PLL reference. \\
\hline 18 & \(\overline{\text { REFA }}\) & 1 & Reference Clock Input A. Along with REFA, this pin is the differential input for the PLL reference. \\
\hline 19 & GND & GND & Ground for PLL Power Supply. Connect to ground. \\
\hline 20 & VDD3 & P & 3.3 V Power Supply for PLL. \\
\hline 21 & REFB & I & Reference Clock Input B. Along with \(\overline{\mathrm{REFB}}\), this pin is the differential input for the PLL reference. \\
\hline 22 & \(\overline{\text { REFB }}\) & 1 & Reference Clock Input B. Along with REFB, this pin is the differential input for the PLL reference. \\
\hline 23 & \(\overline{\mathrm{PD}}\) & 1 & Chip Power-Down, Active Low. This pin has an internal \(30 \mathrm{k} \Omega\) pull-up resistor. \\
\hline 24 & \(\overline{\text { RESET }}\) & 1 & Chip Reset, Active Low. This pin has an internal \(30 \mathrm{k} \Omega\) pull-up resistor. \\
\hline 25 & \(\overline{C S}\) & 1 & Serial Control Port Chip Select; Active Low. This pin has an internal \(30 \mathrm{k} \Omega\) pull-up resistor. \\
\hline 26 & SCLK & 1 & Serial Control Port Clock Signal. This pin has an internal \(30 \mathrm{k} \Omega\) pull-down resistor. \\
\hline 27 & SDIO & 1 & Serial Control Port Bidirectional Serial Data In/Out. \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l}
\hline Pin No. & Mnemonic & Type & Description \\
\hline 28 & SDO & I & Serial Control Port Unidirectional Serial Data Out. \\
29 & GND & GND & Connect to ground. \\
30 & SYNC_OUT & O & LVPECL Complementary Output for Programmable Sync Signal. \\
31 & SYNC_OUT & O & LVPECL Output for Programmable Sync Signal. \\
32 & VDD3 & P & Power Supply for SYNC_OUT Driver. \\
33 & REF_MON & O & Reference Monitor (Output). This pin has multiple selectable outputs. \\
34 & OUT7 & O & LVPECL Complementary Output 7. \\
35 & OUT7 & O & LVPECL Output 7. \\
36 & VDD3 & P & 3.3 V Power Supply for Channel OUT6 and Channel OUT7. \\
37 & OUT6 & O & LVPECL Complementary Output 6. \\
38 & OUT6 & O & LVPECL Output 6. \\
39 & OUT5 & O & LVPECL Complementary Output 5. \\
40 & OUT5 & O & LVPECL Output 5. \\
41 & VDD3 & P & 3.3 V Power Supply for Channel OUT4 and Channel OUT5. \\
42 & \(\overline{\text { OUT4 }}\) & O & LVPECL Complementary Output 4. \\
43 & OUT4 & O & LVPECL Output 4. \\
44 & \(\overline{\text { OUT3 }}\) & O & LVPECL Complementary Output 3. \\
45 & OUT3 & O & LVPECL Output 3. \\
46 & VDD3 & P & 3.3 V Power Supply for Channel OUT2 and Channel OUT3. \\
47 & OUT2 & O & LVPECL Complementary Output 2. \\
48 & OUT2 & O & LVPECL Output 2. \\
EP & EP, GND & GND & Exposed Paddle. The exposed pad is a ground connection on the chip that must be soldered to the analog \\
& & & ground of the PCB to ensure proper functionality and heat dissipation, noise, and mechanical strength \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

Figure 5. Charge Pump Characteristics at VDD_CP \(=3.3 \mathrm{~V}\)

Figure 6. Charge Pump Characteristics at VDD_CP = 5.0 V

Figure 7. PLL Figure of Merit (FOM) vs. Slew Rate at REFA

Figure 8. LVPECL Output (Differential) at 122.88 MHz

Figure 9. LVPECL Differential Voltage Swing vs. Frequency

Figure 10. Additive (Residual) Phase Noise, CLK-to-LVPECL at 122.88 MHz , Divide-by-1

Figure 11. Additive (Residual) Phase Noise, CLK-to-LVPECL at 1500 MHz , Divide-by-1

Figure 12. Phase Noise (Absolute), External VCO (Bowei Model MVCO-1475) at 1474.56 MHz ; PFD \(=122.88 \mathrm{MHz}\); \(L B W=18 \mathrm{kHz}\); LVPECL Output \(=1474.56 \mathrm{MHz}\)

Figure 13. Phase Noise (Absolute), External VCO (Z-Communications Model CRO-2950) at \(2949.12 \mathrm{MHz} ; P \mathrm{FFD}=122.88 \mathrm{MHz} ; L B W=8 \mathrm{kHz} ;\) LVPECL Output \(=2949.12 \mathrm{MHz}\)

Figure 14. Phase Noise (Absolute), External VCO (Z-Communications Model CRO-2950) at \(2949.12 \mathrm{MHz} ; P D=122.88 \mathrm{MHz} ; L B W=8 k ~ H z ;\) LVPECL Output \(=1474.56 \mathrm{MHz}\)

Figure 15. Phase Noise (Absolute), External VCXO (122.88 MHz VCXO) (Crystek CVHD-950); Reference \(=122.88 \mathrm{MHz}\); \(R\) Divider \(=1\)); \(L B W=40 \mathrm{~Hz}\); LVPECL Output \(=122.88 \mathrm{MHz}\)

Figure 16. Phase Noise (Absolute), External VCO 2.05 GHz VCO
(Bowei Model MVCO-2050A); at 2050 MHz; Reference \(=122.054215\) MHz; \(R\) Divider \(=12\)

Figure 17. Phase Noise (Absolute), External VCO (Z-Communications CRO1474-LF) at \(1474.56 \mathrm{MHz} ; P F D=122.88 \mathrm{MHz}\); LBW \(=15 \mathrm{kHz}\); LVPECL Output \(=1474.56 \mathrm{MHz}\)

\section*{TERMINOLOGY}

\section*{Phase Jitter and Phase Noise}

An ideal sine wave can be thought of as having a continuous and even progression of phase with time from \(0^{\circ}\) to \(360^{\circ}\) for each cycle. Actual signals, however, display a certain amount of variation from ideal phase progression over time. This phenomenon is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as being Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are \(\mathrm{dBc} / \mathrm{Hz}\) at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in decibels) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.

It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to \(10 \mathrm{MHz})\). This is called the integrated phase noise over that frequency offset interval; it can be readily related to the time jitter due to the phase noise within that offset frequency interval.
Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

\section*{Time Jitter}

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings varies. In a square wave, the time jitter is a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Because these variations are random in nature, the time jitter is specified in seconds root mean square (rms) or 1 sigma of the Gaussian distribution.
Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the signal-to-noise ratio (SNR) and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

\section*{Additive Phase Noise}

Additive phase noise is the amount of phase noise that can be attributed to the device or subsystem being measured. The phase noise of any external oscillators or clock sources is subtracted, making it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contributes its own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise. When there are multiple contributors to phase noise, the total is the square root of the sum of squares of the individual contributors.

\section*{Additive Time Jitter}

Additive time jitter is the amount of time jitter that can be attributed to the device or subsystem being measured. The time jitter of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contributes its own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

\section*{Data Sheet}

\section*{DETAILED BLOCK DIAGRAM}

\section*{THEORY OF OPERATION}

The AD9525 PLL is useful for generating clock frequencies from a supplied reference frequency. In addition, the PLL can be used to clean up jitter and phase noise on a noisy reference. The exact choice of PLL parameters and loop dynamics is application specific. The flexibility and depth of the AD9525 PLL allow the part to be tailored to function in many different applications and signal environments.

The AD9525 includes on-chip PLL blocks that can be used with an external VCO or VCXO to create a complete phase-locked loop. The PLL requires an external loop filter, which usually consists of a small number of capacitors and resistors. The configuration and components of the loop filter help to establish the loop bandwidth and stability of the PLL. The external loop filter that must be connected between CP and the tuning pin of the VCO/VCXO. This loop filter determines the loop bandwidth and stability of the PLL. Make sure to select the proper PFD polarity for the VCO/VCXO being used.
The AD9525 can also be configured as a clock distribution by shutting down the PLL and using CLKIN and \(\overline{\text { CLKIN }}\) as the input. The M divider can be used to divide the input frequency down to the desired output frequency to each of the eight LVPECL outputs.

\section*{CONFIGURATION OF THE PLL}

Configuration of the PLL is accomplished by programming the various settings for the R divider, N divider, PFD polarity, and charge pump current. The combination of these settings and the loop filter determines the PLL loop bandwidth and PLL stability. These are managed through programmable register settings and by the design of the external loop filter.

Successful PLL operation and satisfactory PLL loop performance are highly dependent on proper configuration of the PLL settings, and the design of the external loop filter is crucial to the proper operation of the PLL.
ADIsimCLK \({ }^{\mathrm{mw}}\) is a free program that can help with the design and exploration of the capabilities and features of the AD9525, including the design of the PLL loop filter. The AD9516 model found in ADIsimCLK Version 1.2 can also be used for modeling the AD9525 loop filter. It is available at www.analog.com/clocks.

\section*{Phase Frequency Detector (PFD)}

The PFD takes inputs from the R divider and the N divider and produces an output proportional to the phase and frequency difference between them. The PFD includes a programmable delay element that controls the width of the antibacklash pulse. This pulse ensures that there is no dead zone in the PFD transfer function and minimizes phase noise and reference spurs. The antibacklash pulse width is set by Register 0x010[1:0].

An important limit to keep in mind is the maximum frequency allowed into the PFD. The maximum input frequency into the PFD is a function of the antibacklash pulse setting, as specified in the phase/frequency detector (PFD) parameter in Table 7.

\section*{Charge Pump (CP)}

The charge pump is controlled by the PFD. The PFD monitors the phase and frequency relationship between its two inputs and tells the CP to pump up or pump down to charge or discharge the integrating node (part of the loop filter). The integrated and filtered CP current is transformed into a voltage that drives the tuning node of the external VCO to move the VCO frequency up or down. The CP can be set for high impedance (allows holdover operation), for normal operation (attempts to lock the PLL loop), for pump-up, or for pump-down (test modes). The CP current is programmable in eight steps. The exact value of the CP current LSB is set by the CPRSET resistor, which is nominally \(5.1 \mathrm{k} \Omega\). The actual LSB current can be calculated by CP_LSB = 3.06/CPRSET.

\section*{PLL External Loop Filter}

An example of an external loop filter for the PLL is shown in Figure 19. A loop filter must be calculated for each desired PLL configuration. The values of the components depend on the VCO frequency, the Kvco, the PFD frequency, the charge pump current, the desired loop bandwidth, and the desired phase margin. The loop filter affects the phase noise, the loop settling time, and the loop stability. A basic knowledge of PLL theory is necessary for understanding loop filter design. ADIsimCLK can help with the calculation of a loop filter according to the application requirements.

\section*{PLL Reference Inputs}

The AD9525 features two fully differential PLL reference input circuits. The differential inputs are self-biased, allowing for easy ac coupling of input signals. All PLL reference inputs are off by default. The self-bias level of the two sides is offset slightly to prevent chattering of the input buffer when the reference is ac coupled and is slow or missing. The input offset increases the voltage swing required of the driver to overcome the offset. The input frequency range and common-mode voltages for the reference inputs are specified in Table 4.

The reference input receiver is powered down when the PLL is powered down. It is possible to dc couple to these inputs. If the differential reference input is driven by a single-ended signal, the unused side (\(\overline{\text { REFA }}\) or \(\overline{\mathrm{REFB}}\)) should be decoupled via a suitable capacitor to a quiet ground.
The AD9525 provides a third single-ended CMOS reference input referred to as REFC.

\section*{Reference Switchover}

The AD9525 supports two separate differential reference inputs. Manual switchover is performed between these inputs either through Register 0x01A or by using the REF_SEL pin. This feature supports networking and other applications that require redundant references.

Manual switchover requires that a clock be present on the reference input that is being switched to or that the switchover deglitching feature be disabled (Register 0x01A[4]).

\section*{Reference Dividers \(R\)}

The reference inputs are routed to their respective divider, R. R can be set to any value from 1 to 32 (Both \(\mathrm{R}=0\) and \(\mathrm{R}=1\) give divide-by-1.).
The division is set by the values of \(\mathrm{R}_{\text {Low }}\) and \(\mathrm{R}_{\text {High. }}\). The divider can be bypassed (equivalent to divide-by-1, divider circuit is powered down) by setting the bypass bit.
For each \(R\) divider, the frequency division \(\left(\mathrm{R}_{\mathrm{x}}\right)\) is set by the values of \(\mathrm{R}_{\text {LOw }}\) and \(\mathrm{R}_{\text {HIGH }}\) (four bits each, representing Decimal 0 to Decimal 15), where
\[
\begin{aligned}
& \text { Number of Low Cycles }=R_{\text {LOW }}+1 \\
& \text { Number of High Cycles }=R_{H I G H}+1
\end{aligned}
\]

The high and low cycles are cycles of the clock signal currently routed to the input of the \(R\).
When a divider is bypassed, \(\mathrm{R}_{\mathrm{x}}=1\).
Otherwise, \(\mathrm{Rx}_{\mathrm{x}}=\left(\mathrm{R}_{\text {HIGH }}+1\right)+\left(\mathrm{R}_{\text {Low }}+1\right)=\mathrm{R}_{\text {HIGH }}+\mathrm{R}_{\text {Low }}+2\). This allows each reference divider to divide by any integer from 1 to 32 .
The output of the R divider goes to a mux to select one of the references to the PFD inputs. The frequency applied to the PFD must not exceed the maximum allowable frequency, which depends on the antibacklash pulse setting (see Table 7).
The R divider has its own reset. The R divider can also be reset using the shared reset bit of the R and B counters. This reset bit is not self-clearing.
The R divider in the REFC path has a division ratio programmable from 1 to 127.

\section*{VCO/VCXO, M and N Feedback Dividers}

The feedback division is the product of the \(M\) divider and the N divider. The N divider is a combination of a prescaler \((\mathrm{P})\) and a \(B\) divider.
\[
f_{V C O}=\left(f_{R E F} / R\right) \times N \times \mathrm{M}
\]
where:
\(M=1,2,3,4,5\), or 6 .
\(N=(P \times B)\).
\(P=1,2,3,4,5\), or 6 .
\(\mathrm{B}=1,2,3, \ldots\) or 32 .

\section*{M Divider}

The \(M\) divider is a fixed divide (FD) of \(1,2,3,4,5\), or 6 .
The maximum input frequency to the M counter is reflected in the maximum CLKIN input frequency specified in Table 6.
The \(M\) divider provides frequency division between the CLKIN input and the N feedback divider and clock distribution output channels.

The M divider can also be set to static, which is useful for applications where the only desired output frequency is the CLK input frequency.

\section*{P Divider}

The P divider is a fixed divide (FD) of \(1,2,3,4,5\) or 6 .
The maximum input frequency to the P counter is reflected in the maximum CLKIN input frequency specified in Table 6.

\section*{B Divider}

The B divider is a fixed divide (FD) of \(1,2,3, \ldots\) or 32 .
The maximum input frequency to the \(B\) counter is \(\sim 1500 \mathrm{MHz}\), as specified in Table 7. This is the prescaler input frequency (external VCO or CLKIN) divided by the P and M counters. For example, \(\mathrm{M}=1\) and \(\mathrm{P}=1\) mode is not allowed if the external VCO frequency is greater than 1500 MHz because the frequency going to the \(B\) divider is too high.

The division is set by the values of \(B_{\text {Low }}\) and \(B_{\text {high. }}\). The divider can be bypassed (equivalent to divide-by-1, divider circuit is powered down) by setting the bypass bit.
The frequency division, \(B_{X}\), is set by the values of \(B_{\text {Low }}\) and \(\mathrm{B}_{\mathrm{HIGH}}\) (four bits each, representing Decimal 0 to Decimal 15), where

> Number of Low Cycles \(=\mathrm{B}_{\mathrm{LOw}}+1\)
> Number of High Cycles \(=\mathrm{B}_{\mathrm{HIGH}}+1\)

The high and low cycles are cycles of the clock signal currently routed to the input of the \(B\) divider.
When a divider is bypassed, \(\mathrm{B}_{\mathrm{X}}=1\).
Otherwise, \(\mathrm{B}_{\mathrm{X}}=\left(\mathrm{B}_{\text {HIGH }}+1\right)+\left(\mathrm{B}_{\text {LOw }}+1\right)=\mathrm{B}_{\text {HIGH }}+\mathrm{B}_{\text {LOw }}+2\).
Although manual reset is not normally required, the \(B\) counter has its own reset bit. Note that this reset bit is not self-clearing.

\section*{Digital Lock Detect (DLD)}

By selecting the proper output through the mux on each pin, the DLD function is available at the STATUS and REF_MON pins. The digital lock detect circuit indicates a lock when the time difference of the rising edges at the PFD inputs is less than a specified value (the lock threshold). The loss of a lock is indicated when the time difference exceeds a specified value (the unlock threshold). Note that the unlock threshold is wider than the lock threshold, which allows some phase error in excess of the lock window to occur without chattering on the lock indicator.
The lock detect window timing depends on the value of the CPRSET resistor, as well as three settings: the digital lock detect window bit (Register 0x019[1]), the antibacklash pulse width bits (Register 0x010[1:0], see Table 8), and the lock detect counter bits (Register 0x019[3:2]). The lock and unlock detection values in Table 8 are for the nominal value of \(\operatorname{CPRSET}=5.11 \mathrm{k} \Omega\). Doubling the CPRSET value to \(10 \mathrm{k} \Omega\) doubles the values in Table 8.
A lock is not indicated until there is a programmable number of consecutive PFD cycles with a time difference that is less than the lock detect threshold. The lock detect circuit continues to indicate a lock until a time difference greater than the unlock threshold occurs on a single subsequent cycle. For the lock detect to work properly, the period of the PFD frequency must be greater than the unlock threshold. The number of consecutive PFD cycles required for a lock is programmable (Register 0x018[6:5]).
Note that, in certain low (\(<500 \mathrm{~Hz}\)) loop bandwidth, high phase margin cases, it is possible that the DLD can chatter during acquisition. This is normal and occurs because the PFD inputs are moving slowly in and out of the lock/unlock window during PLL loop settling. Adjustment of the lock detect counter setting (Register 0x019[3:2]) can suppress this behavior.

\section*{External VCXO/VCO Clock Input (CLKIN/CLKIN)}

This differential input is used to drive the AD9525 clock distribution section. The pins are internally self-biased, and the input signal should be ac-coupled via capacitors.
The CLKIN/ \(\overline{\text { CLKIN }}\) input can be used either as a distribution only input (with the PLL off) or as a feedback input for an external VCO/VCXO using the internal PLL. Sample configurations are illustrated in Figure 19 through Figure 21. Refer to the manufacturer's recommendation for VCO terminations; a T or PI attenuator is often recommended, as illustrated in Figure 19.
For operation using a CMOS input, an external resistive divider is required to limit the swing on CLKIN (see Table 6 for the maximum input rating).

\section*{Status Monitor}

The AD9525 contains three frequency status monitors that are used to indicate if the PLL reference (or references, in the case of single-ended mode) and the VCO have fallen below a threshold.

\({ }^{1}\) VCO MANUFACTURERS RECOMMEND EITHER A T OR PI ATTENUATOR TO PREVENT VCO PULLING. REFER TO MANUFACTURER'S RECOMMENDATION

Figure 19. CLKIN Configured as Single-Ended VCO

Figure 20. CLKIN Configured as Single-Ended CMOS VCXO

Figure 21. CLKIN Configured as Differential LVPECL VCXO

\section*{CLOCK DISTRIBUTION}

The AD9525 can be used only as a clock fan out buffer by disabling the PLL circuit blocks except for the clock distribution section. The clock distribution consists of eight LVPECL clock output drivers that share a common M divider. See the M Divider section for more information on the common M divider.

\section*{Duty Cycle and Duty-Cycle Correction}

The duty cycle of the clock signal at the output of a driver is a result of either or both of the following conditions:
- The CLKIN, \(\overline{\text { CLKIN }}\) input duty cycle. If the CLKIN, \(\overline{\text { CLKIN }}\) input is routed directly to the output, the duty cycle of the output is the same as the CLKIN, \(\overline{\text { CLKIN }}\) input.
- The M divider value. An odd M divider value results in a non-50\% duty cycle.

Table 23.Typical Output Duty Cycle with M Divider \(\neq 1\)
\begin{tabular}{l|l}
\hline M Divider & Output Duty Cycle (\%) \\
\hline Even & 50 \\
Odd \(=3\) & 33.3 \\
Odd \(=5\) & 40 \\
\hline
\end{tabular}

\section*{LVPECL Output Drivers}

The LVPECL differential voltage (\(\mathrm{V}_{\mathrm{OD}}\)) is selectable (from \(\sim 400 \mathrm{mV}\) to 960 mV (see Bit 2 and Bit 1 in Register 0x0F0 to Register 0x0F7).
The LVPECL output polarity can be set as noninverting or inverting, which allows for the adjustment of the relative polarity of outputs within an application without requiring a board layout change. Each LVPECL output can be powered down or powered up, as needed. Because of the architecture of the LVPECL output stages, there is the possibility of electrical overstress and breakdown under certain power-down conditions.
For this reason, the LVPECL outputs have two power-down modes: total power-down and safe power-down. The primary powerdown mode is the safe power-down mode. This mode continues to protect the output devices while powered down. There are three
ways to activate safe power-down mode: individually set the power-down bit for each driver, power down an individual output channel, or activate sleep mode.
In total power-down mode \(0 \times 0230[1]=1\) (power down distribution reference). This mode must not be used if there is an external voltage bias network (such as Thevenin equivalent termination) on the output pins that will cause a dc voltage to appear at the powered down outputs. However, total power-down mode is allowed when the LVPECL drivers are terminated using only pull-down resistors.

Figure 22. LVPECL Output Simplified Equivalent Circuit

\section*{SYNC_OUT}

SYNC_OUT provides one LVPECL output or two CMOS output signal that can used to reset or synchronize a converter. SYNC_OUT functionality block diagram is shown in Figure 23. The SYNC_OUT signal is derived from the PLL phase detector reference input clock or feedback (N-divider) clock. A programmable 16-bit \(S\) divider further divides the selected reference clock. There are three different modes of operation for SYNC_OUT: single shot, periodic, or pseudorandom. SYNC_OUT is retimed to the high speed clock.

Figure 23. SYNC_OUT Functional Diagram

\section*{Single Shot Mode}

In single shot mode one sync pulse occurs after writing SYNC ENABLE 0x192[4] = 1 . An IO_UPDATE is required to complete a register write. The width of the sync pulse is determined by the value of the \(S\) divider. A divider value of 0x0000 allows a pulse whose width is equal to one half period of the phase detector rate. A divider value of \(0 \times 0001\) allows a pulse whose width is equal to two half periods of the phase detector rate. In single shot mode, the sync enable bit is self-clearing and the sync circuits are ready to receive another sync enable.

\section*{Periodic Mode}

In periodic mode, the pulse is continuous until SYNC ENABLE is cleared by a register writing SYNC ENABLE 0x192[4] \(=0\). An IO_UPDATE is required to complete a register write. The width of the sync pulse is equal to one half period of the phase detector rate. The pulse repetition rate is determined by the value of the \(S\) divider. A divider value of \(0 \times 0000\) allows a pulse rate equal to the phase detector rate. A divider value of \(0 \times 0001\) allows a pulse rate equal to two half periods of the phase detector rate. The SYNC_OUT signal is resampled with the OUT clock to ensure time alignment and minimum output skew. There is a possibility in periodic mode that the SYNC_OUT could slip one half cycle of the OUT clock period.

\section*{Pseudorandom Mode}

Pseudorandom mode is similar to periodic mode but the pulse is a PN17 sequence that is continuous until SYNC ENABLE is cleared by a register writing SYNC ENABLE \(0 \times 192[4]=0\). An IO_UPDATE is required to complete a register write. The width of the sync pulse is equal to one half period the phase detector rate. The pulse repetition rate is determined by the value of the S divider. A divider value of 0x0000 allows a pulse rate equal to the phase detector rate. A divider value of 0x0001 allows pulse rate equal to two half the phase detector rate.

\section*{SYNC_OUT Programming}

The procedure to configure the SYNC_OUT depends on the logic requirement of the converters that require synchronization. Analog Devices, Inc., converters are synchronized on the rise edge of the SYNC pulse.

\section*{SYNC_OUT CMOS Driver}

The user can also configure the LVPECL SYNC_OUT as a pair of CMOS outputs. When the output is configured as CMOS, CMOS Output A and CMOS Output B are automatically turned on. Either CMOS Output A or Output B can be turned on or off independently. The user can also select the relative polarity of the CMOS outputs for any combination of inverting and noninverting (see Register 0x0F9). The user can power down each CMOS output as needed to save power. The CMOS driver is in tristate when it is powered down.

Figure 24. SYNC Output Timing

Figure 25. SYNC_OUTFlowchart

\section*{RESET MODES}

The AD9525 has a power-on reset (POR) and several other ways to apply a reset condition to the chip.

\section*{Power-On Reset}

During chip power-up, a power-on reset pulse is issued when VDD reaches \(\sim 2.6 \mathrm{~V}(<2.8 \mathrm{~V})\) and restores the chip to the default on-chip setting. It takes \(\sim 70 \mathrm{~ms}\) for the outputs to begin toggling after the power-on reset pulse signal is internally generated. The default power-on state of the AD9525 is configured as a buffer.

\section*{Hardware Reset via the \(\overline{\text { RESET }}\) Pin}
\(\overline{\text { RESET, }}\) a hard reset (an asynchronous hard reset is executed by briefly pulling \(\overline{\text { RESET }}\) low), restores the chip to the on-chip default register settings. It takes \(\sim 2 \mu \mathrm{~s}\) for the outputs to begin toggling after RESET is issued.

\section*{Soft Reset via the Serial Port}

The serial port control register allows for a soft reset by setting Bit 2 and Bit 5 in Register 0x000. When Bit 5 and Bit 2 are set, the chip enters a soft reset mode and restores the chip to the onchip setting, except for Register 0x000. Except for the self-clearing bits, Bit 2 and Bit 5, Register 0x000 retains its previous value prior to reset. These bits are self-clearing. However, the self-clearing operation does not complete until an additional serial port SCLK cycle occurs, and the AD9525 is held in reset until that happens.

\section*{POWER-DOWN MODES}

\section*{Chip Power-Down via \(\overline{P D}\)}

The AD9525 can be put into a power-down condition by pulling the \(\overline{\mathrm{PD}}\) pin low. Power-down turns off most of the functions and currents inside the AD9525. The chip remains in this power-down state until \(\overline{\mathrm{PD}}\) is brought back to logic high. When taken out of power-down mode, the AD9525 returns to the settings that were programmed into its registers prior to the power-down, unless the registers are changed by new programming while the \(\overline{\mathrm{PD}}\) pin is held low.
Powering down the chip shuts down the currents on the chip, except for the bias current necessary to maintain the LVPECL outputs in a safe shutdown mode. The LVPECL bias currents are needed to protect the LVPECL output circuitry from damage that can be caused by certain termination and load configurations when tristated. Because this is not a complete power-down, it can be called sleep mode.
When the AD9525 is in a \(\overline{\mathrm{PD}}\) power-down, the chip is in the following state:
- The PLL is off.
- The CLKIN input buffer is off, but the CLKIN input dc bias circuit is on.
- The reference input buffer is off, but the dc bias circuit is still on.
- All dividers are off.
- All LVPECL outputs are in safe off mode.
- The serial control port is active, and the chip responds to commands.

\section*{PLL Power-Down}

The PLL section of the AD9525 can be selectively powered down. In this mode, the AD9525 can be used as a 1 to 8 clock buffer by using the CLKIN as the clock input.

\section*{Distribution Power-Down}

The distribution section can be powered down by writing Register \(0 \times 230[4]=1 b\), which turns off the bias to the distribution section.

\section*{Individual Clock Output Power-Down}

Any of the clock distribution outputs can be powered down into safe power-down mode by individually writing to the appropriate registers. The register map details the individual power-down settings for each output. These settings are found in Register 0x0F0[0] to Register 0x0F7[0].

\section*{Individual Clock Channel Power-Down}

Any of the clock distribution channels can be powered down individually by writing to the appropriate registers. Powering down a clock channel is similar to powering down an individual driver, but it saves more power because additional circuits are also powered down. Powering down a clock channel also automatically powers down the drivers connected to it. The register map details the individual power-down settings for each output channel. These settings are found in Register 0x0F0[4], Register 0x0F2[4], Register 0x0F4[4], and Register 0x0F6[4].

\section*{SERIAL CONTROL PORT}

The AD9525 serial control port is a flexible, synchronous serial communications port that allows an easy interface with many industry-standard microcontrollers and microprocessors. The AD9525 serial control port is compatible with most synchronous transfer formats, including Motorola \({ }^{\circ}\) SPI and Intel \({ }^{\circ}\) SSR protocols. The serial control port allows read/write access to all registers that configure the AD9525.

\section*{PIN DESCRIPTIONS}

SCLK (serial clock) is the serial shift clock. This pin is an input. SCLK is used to synchronize serial control port reads and writes. Write data bits are registered on the rising edge of this clock, and read data bits are registered on the falling edge. This pin is internally pulled down by a \(30 \mathrm{k} \Omega\) resistor to ground.
SDIO (serial data input/output) is a dual-purpose pin that acts either as an input only (unidirectional mode) or as an input/ output (bidirectional mode). The AD9525 defaults to the bidirectional I/O mode (Register 0x000[7] = 0b).

SDO (serial data out) is used only in the unidirectional I/O mode (Register 0x000[7] = 1b) as a separate output pin for reading back data.
\(\overline{\mathrm{CS}}\) (chip select bar) is an active low control that gates the read and write cycles. When \(\overline{\mathrm{CS}}\) is high, SDO and SDIO are in a high impedance state. This pin is internally pulled up by a \(30 \mathrm{k} \Omega\) resistor to VS.

Figure 26. Serial Control Port

\section*{GENERAL OPERATION OF SERIAL CONTROL PORT}

Single byte or multiple byte transfers are supported, as well as MSB first or LSB first transfer formats. The AD9525 serial control port can be configured for a single bidirectional I/O pin (SDIO only) or for two unidirectional I/O pins (SDIO/SDO). By default, the AD9525 is in bidirectional mode. Short instruction mode (8-bit instruction) is not supported. Only long instruction mode (16-bit instruction) is supported.

A write or a read operation to the AD9525 is initiated by pulling \(\overline{\mathrm{CS}}\) low.
The \(\overline{\mathrm{CS}}\) stalled high mode is supported in data transfers where three or fewer bytes of data (plus instruction data) are transferred (see Table 24). In this mode, the \(\overline{\mathrm{CS}}\) pin can temporarily return high on any byte boundary, allowing time for the system controller to process the next byte. \(\overline{\mathrm{CS}}\) can go high on byte boundaries only and can go high during either part (instruction or data) of the transfer.

During this period, the serial control port state machine enters a wait state until all data is sent. If the system controller decides to abort the transfer before all of the data is sent, the state machine must be reset, either by completing the remaining transfers or by returning \(\overline{\mathrm{CS}}\) low for at least one complete SCLK cycle (but fewer than eight SCLK cycles). Raising the \(\overline{\mathrm{CS}}\) pin on a nonbyte boundary terminates the serial transfer and flushes the buffer.
In the streaming mode (see Table 25), any number of data bytes can be transferred in a continuous stream. The register address is automatically incremented or decremented (see the MSB/LSB First Transfers section). \(\overline{\mathrm{CS}}\) must be raised at the end of the last byte to be transferred, thereby ending streaming mode.

\section*{Communication Cycle—Instruction Plus Data}

There are two parts to a communication cycle with the AD9525. The first part writes a 16 -bit instruction word into the AD9525, coincident with the first 16 SCLK rising edges. The instruction word provides the AD9525 serial control port with information regarding the data transfer, which is the second part of the communication cycle. The instruction word defines whether the upcoming data transfer is a read or a write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer.

\section*{Write}

If the instruction word is for a write operation, the second part is the transfer of data into the serial control port buffer of the AD9525. Data bits are registered on the rising edge of SCLK.
The length of the transfer (one, two, or three bytes or streaming mode) is indicated by two bits ([W1:W0]) in the instruction byte. When the transfer is one, two, or three bytes but not streaming, \(\overline{\mathrm{CS}}\) can be raised after each sequence of eight bits to stall the bus (except after the last byte, where it ends the cycle). When the bus is stalled, the serial transfer resumes when \(\overline{\mathrm{CS}}\) is lowered. Raising the \(\overline{\mathrm{CS}}\) pin on a nonbyte boundary resets the serial control port. During a write, streaming mode does not skip over reserved or blank registers, and the user can write \(0 x 00\) to the reserved register addresses.
Because data is written into a serial control port buffer area, not directly into the actual control registers of the AD9525, an additional operation is needed to transfer the serial control port buffer contents to the actual control registers of the AD9525, thereby causing them to become active. The update registers operation (IO_UPDATE) consists of setting Register 0x232[0] = 1 b (this bit is self-clearing). Any number of bytes of data can be changed before executing an update registers. The update registers operation simultaneously actuates all register changes that have been written to the buffer since any previous update.

\section*{Read}

The AD9525 supports only the long instruction mode. If the instruction word is for a read operation, the next \(\mathrm{N} \times 8\) SCLK cycles clock out the data from the address specified in the instruction word, where N is 1 to 3 as determined by [W1:W0]. If \(\mathrm{N}=4\), the read operation is in streaming mode, continuing until \(\overline{\mathrm{CS}}\) is raised. Streaming mode does not skip over reserved or blank registers. The readback data is valid on the falling edge of SCLK.
The default mode of the AD9525 serial control port is the bidirectional mode. In bidirectional mode, both the sent data and the readback data appear on the SDIO pin. It is also possible to set the AD9525 to unidirectional mode (Register 0x000[7] = 1 and Register \(0 x 000[0]=1\)). In unidirectional mode, the readback data appears on the SDO pin.

A readback request reads the data that is in the serial control port buffer area or the data that is in the active registers (see Figure 27). Readback of the buffer or active registers is controlled by Register 0x004[0].
The AD9525 uses Register Address 0x000 to Register
Address 0x232.

Figure 27. Relationship Between Serial Control Port Buffer Registers and Active Registers

\section*{THE INSTRUCTION WORD (16 BITS)}

The MSB of the instruction word is \(\mathrm{R} / \overline{\mathrm{W}}\), which indicates whether the instruction is a read or a write. The next two bits ([W1:W0]) indicate the length of the transfer in bytes. The final 13 bits are the address ([A12:A0]) at which to begin the read or write operation.
For a write, the instruction word is followed by the number of bytes of data indicated by Bits[W1:W0] (see Table 24).

Table 24. Byte Transfer Count
\begin{tabular}{l|l|l}
\hline W1 & W0 & Bytes to Transfer \\
\hline 0 & 0 & 1 \\
0 & 1 & 2 \\
1 & 0 & 3 \\
1 & 1 & Streaming mode \\
\hline
\end{tabular}

Bits[A12:A0] select the address within the register map that is written to or read from during the data transfer portion of the communications cycle. Only Bits[A9:A0] are needed to cover
the range of the \(0 \times 232\) registers used by the AD9525. Bits[A12:A10] must always be 0b. For multibyte transfers, this address is the starting byte address. In MSB first mode, subsequent bytes decrement the address.

\section*{MSB/LSB FIRST TRANSFERS}

The AD9525 instruction word and byte data can be MSB first or LSB first. Any data written to Register 0x000 must be mirrored; the upper four bits (Bits[7:4]) must mirror the lower four bits (Bits[3:0]). This makes it irrelevant whether LSB first or MSB first is in effect. As an example of this mirroring, see the default setting for Register 0x000, which mirrors Bit 4 and Bit 3. This sets the long instruction mode, which is the default and the only mode that is supported.

The default for the AD9525 is MSB first.
When LSB first is set by Register 0x000[1] and Register 0x000[6], it takes effect immediately because it affects only the operation of the serial control port and does not require that an update be executed.

When MSB first mode is active, the instruction and data bytes must be written from MSB to LSB. Multibyte data transfers in MSB first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes must follow, in order, from the high address to the low address. In MSB first mode, the serial control port internal address generator decrements for each data byte of the multibyte transfer cycle.
When LSB first is active, the instruction and data bytes must be written from LSB to MSB. Multibyte data transfers in LSB first format start with an instruction byte that includes the register address of the least significant data byte, followed by multiple data bytes. In a multibyte transfer cycle, the internal byte address generator of the serial port increments for each byte.
The AD9525 serial control port register address decrements from the register address just written toward Register 0x000 for multibyte I/O operations if the MSB first mode is active (default). If the LSB first mode is active, the register address of the serial control port increments from the address just written toward Register 0x232 for multibyte I/O operations.
Streaming mode always terminates when it reaches Register 0x232. Note that unused addresses are not skipped during multibyte I/O operations.

Table 25. Streaming Mode (No Addresses Are Skipped)
\begin{tabular}{l|l|l}
\hline Write Mode & Address Direction & Stop Sequence \\
\hline LSB first & Increment & \(0 \times 230,0 \times 231,0 \times 232\), stop \\
MSB first & Decrement & \(0 \times 001,0 \times 000,0 \times 232\), stop \\
\hline
\end{tabular}

Table 26. Serial Control Port, 16-Bit Instruction Word, MSB First MSB
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{I 1 5}\) & \(\mathbf{I 1 4}\) & \(\mathbf{I 1 3}\) & \(\mathbf{I 1 2}\) & \(\mathbf{I 1 1}\) & \(\mathbf{I 1 0}\) & \(\mathbf{I 9}\) & \(\mathbf{I 8}\) & \(\mathbf{I 7}\) & \(\mathbf{I 6}\) & \(\mathbf{I 5}\) & \(\mathbf{I 4}\) & \(\mathbf{I 3}\) & \(\mathbf{I 2}\) & \(\mathbf{I 1}\) & \(\mathbf{I 0}\) \\
\hline \(\mathrm{R} / \overline{\mathrm{W}}\) & W 1 & W 0 & \(\mathrm{~A} 12=0\) & \(\mathrm{~A} 11=0\) & \(\mathrm{~A} 10=0\) & A 9 & A 8 & A 7 & A 6 & A 5 & A 4 & A 3 & A 2 & A 1 & A 0 \\
\hline
\end{tabular}

Figure 28. Serial Control Port Write—MSB First, 16-Bit Instruction, Two Bytes of Data

Figure 29. Serial Control Port Read—MSB First, 16-Bit Instruction, Four Bytes of Data

Figure 30. Serial Control Port Write—MSB First, 16-Bit Instruction, Timing Measurements

Figure 31. Timing Diagram for Serial Control Port Register Read

Figure 32. Serial Control Port Write—LSB First, 16-Bit Instruction, Two Bytes of Data

Figure 33. Serial Control Port Timing—Write

Table 27. Serial Control Port Timing
\begin{tabular}{l|l}
\hline Parameter & Description \\
\hline \(\mathrm{t}_{\mathrm{DS}}\) & Setup time between data and rising edge of SCLK \\
\(\mathrm{t}_{\mathrm{DH}}\) & Hold time between data and rising edge of SCLK \\
\(\mathrm{t}_{\mathrm{CLK}}\) & Period of the clock \\
\(\mathrm{t}_{\mathrm{S}}\) & Setup time between the \(\overline{\mathrm{CS}}\) falling edge and SCLK rising edge (start of communication cycle) \\
\(\mathrm{t}_{\mathrm{c}}\) & Setup time between SCLK rising edge and the \(\overline{\mathrm{CS}}\) rising edge (end of communication cycle) \\
\(\mathrm{t}_{\text {HIGH }}\) & Minimum period that SCLK should be in a logic high state \\
\(\mathrm{t}_{\mathrm{LO}}\) & Minimum period that SCLK should be in a logic low state \\
\(\mathrm{t}_{\mathrm{DV}}\) & SCLK to valid SDIO and SDO (see Figure 31) \\
\hline
\end{tabular}

\section*{CONTROL REGISTERS}

\section*{CONTROL REGISTER MAP OVERVIEW}

Register addresses that are not listed in Table 28 are not used, and writing to those registers has no effect. Registers that are marked as reserved should never have their values changed.

When writing to registers with bits that are marked reserved, the user should take care to always write the default value for the reserved bits.

Table 28. Control Register Map
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg. Addr. (Hex) & \begin{tabular}{l}
Register \\
Name
\end{tabular} & \[
\begin{aligned}
& \text { (MSB) } \\
& \text { Bit } 7
\end{aligned}
\] & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & \[
\begin{aligned}
& \text { (LSB) } \\
& \text { Bit } 0
\end{aligned}
\] & Default Value (Hex) \\
\hline \multicolumn{11}{|l|}{Serial Port Configuration} \\
\hline \multirow[t]{2}{*}{0x000} & \multirow[t]{2}{*}{SPI mode serial port configuration} & \[
\begin{aligned}
& \text { SDO } \\
& \text { active }
\end{aligned}
\] & LSB first/ address increase & Soft reset & Don't care & Don't care & Soft reset & LSB first/ address increase & SD0 active & \(0 \times 00\) \\
\hline & & Don't care & Don't care & Soft reset & Don't care & Don't care & Soft reset & Don't care & Don't care & 0x00 \\
\hline 0x004 & Readback control & Don't care & Read back active regs & 0x00 \\
\hline \multicolumn{11}{|l|}{PLL Configuration} \\
\hline 0x010 & PFD charge pump & PFD polarity & \multicolumn{3}{|c|}{CP current, Bits[2:0]} & \multicolumn{2}{|l|}{CP mode, Bits[1:0]} & \multicolumn{2}{|l|}{Antibacklash pulse width, Bits[1:0]} & 0x7D \\
\hline 0x011 & \multirow[t]{2}{*}{R dividers} & \multicolumn{4}{|c|}{REFB divider output high cycles, Bits[3:0]} & \multicolumn{4}{|c|}{REFB divider output low cycles, Bits[3:0]} & \(0 \times 00\) \\
\hline 0x012 & & \multicolumn{4}{|c|}{REFA divider output high cycles, Bits[3:0]} & \multicolumn{4}{|c|}{REFA divider output low cycles, Bits[3:0]} & \(0 \times 00\) \\
\hline 0x013 & B divider & \multicolumn{4}{|c|}{B divider output high cycles, Bits[3:0]} & \multicolumn{4}{|c|}{B divider output low cycles, Bits[3:0]} & \(0 \times 00\) \\
\hline 0x014 & N divider & Don't care & Don't care & B divider bypass & REFB divider bypass & REFA divider bypass & \multicolumn{3}{|c|}{P divider prescaler, Bits[2:0]} & 0x00 \\
\hline 0x015 & Resets & Don't care & Reserved & Reserved & Reserved & B divider reset & REFB divider reset & REFA divider reset & Reset all dividers & 0x00 \\
\hline 0x016 & REFC & REFC enable & \multicolumn{7}{|c|}{REFC divider, Bits[6:0]} & 0x00 \\
\hline 0x017 & Status pin & Charge pump pin to VDD_CP/2 & STATUS pin divider enable & \multicolumn{6}{|c|}{STATUS output select, Bits[5:0]} & \(0 \times 00\) \\
\hline 0x018 & REF_MON pin control & Don't care & Don't care & Don't care & \multicolumn{5}{|c|}{REF_MON pin control, Bits[4:0]} & \(0 \times 00\) \\
\hline 0x019 & Lock detect & Don't care & Don't care & Don't care & Don't care & \multicolumn{2}{|l|}{Lock detect counter, Bits[1:0]} & Digital lock detect window & Digital lock det disable & \(0 \times 00\) \\
\hline 0x01A & Ref switchover and monitors & \begin{tabular}{l}
Enable \\
FB clock present monitor
\end{tabular} & Enable REFA present monitor & Enable REFB present monitor & Disable switchover deglitch & \begin{tabular}{l}
Select REFB \\
(manual register mode)
\end{tabular} & Stay on REFB & Use REF_SEL pin for reference switchover & Enable automatic reference switchover & \(0 \times 00\) \\
\hline 0x01B & Reserved & \[
\begin{aligned}
& \text { Reserved } \\
& =0
\end{aligned}
\] & Reserved \(=0\) & Reserved \(=0\) & \[
\begin{aligned}
& \text { Reserved = } \\
& 0
\end{aligned}
\] & \multicolumn{2}{|l|}{Reserved \(=0\)} & Reserved \(=0\) & Reserved \(=0\) & \(0 \times 00\) \\
\hline 0x01C & PLL block PD register & \begin{tabular}{l}
N divider ECL 2 \\
CMOS PD
\end{tabular} & N divider PD & R Divider B ECL 2 CMOS PD & \begin{tabular}{l}
R Divider A ECL 2 \\
CMOS PD
\end{tabular} & R Divider B PD & \begin{tabular}{l}
R \\
Divider A PD
\end{tabular} & R Channel B PD & R Channel A
PD & 0x22 \\
\hline 0x01F & PLL readback & Unused & Unused & Unused & Selected reference & Status FB clock & Status REFB & Status REFA & Digital lock detect (DLD) & N/A \\
\hline \multicolumn{11}{|l|}{PECL/CMOS Outputs} \\
\hline 0x0F0 & LVPECL OUT0 & Don't care & Don't care & Don't care & Power down Channel 0, Channel 1 & Don't care & \multicolumn{2}{|l|}{OUTO PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline 0x0F1 & LVPECL OUT1 & Don't care & Don't care & Don't care & Reserved & Don't care & \multicolumn{2}{|l|}{OUT1 PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline 0x0F2 & LVPECL OUT2 & Don't care & Don't care & Don't care & Power down Channel 2, Channel 3 & Don't care & \multicolumn{2}{|l|}{OUT2 PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline 0x0F3 & LVPECL OUT3 & Don't care & Don't care & Don't care & Reserved & Don't care & \multicolumn{2}{|l|}{OUT3 PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline
\end{tabular}

\section*{AD9525}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg. Addr. (Hex) & \begin{tabular}{l}
Register \\
Name
\end{tabular} & (MSB)
\[
\text { Bit } 7
\] & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & \[
\begin{aligned}
& \text { (LSB) } \\
& \text { Bit } 0
\end{aligned}
\] & Default Value (Hex) \\
\hline 0x0F4 & LVPECL OUT4 & Don't care & Don't care & Don't care & Power down Channel 4, Channel 5 & Don't care & \multicolumn{2}{|l|}{OUT4 PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline 0x0F5 & LVPECL OUT5 & Don't care & Don't care & Don't care & Reserved & Don't care & \multicolumn{2}{|l|}{OUT5 PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline 0x0F6 & LVPECL OUT6 & Don't care & Don't care & Don't care & Power down Channel 6, Channel 7 & Don't care & \multicolumn{2}{|l|}{OUT6 PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline 0x0F7 & LVPECL OUT7 & Don't care & Don't care & Don't care & Reserved & Don't care & \multicolumn{2}{|l|}{OUT7 PECL output level, Bits[1:0]} & Power down PECL driver & 0x04 \\
\hline 0x0F8 & Sync output & Don't care & Don't care & Don't care & Power down sync channel & Don't care & \multicolumn{2}{|l|}{SYNC_OUT PECL output level, Bits[1:0]} & Power down PECL driver & 0x10 \\
\hline 0x0F9 & Sync output, other control & Don't care & Don't care & Don't care & Polarity CMOS mode & \multicolumn{2}{|l|}{Enable CMOS drivers, Bits[1:0]} & CMOS mode & Sync out resampling edge select & 0x00 \\
\hline 0x0FA & Drivers reserved & Don't care & 0x00 \\
\hline SYNC C & ntrol & & & & & & & & & \\
\hline 0x190 & Sync clock S divider & & & & \multicolumn{5}{|l|}{Sync clock S divider, Bits[7:0]} & 0x00 \\
\hline 0x191 & Sync clock S divider & & & & \multicolumn{5}{|l|}{Sync clock S divider, Bits[15:8]} & 0x00 \\
\hline 0x192 & Sync clock control & Don't care & Don't care & Don't care & Sync enable & \multicolumn{2}{|l|}{Sync source, Bits[1:0]} & \multicolumn{2}{|l|}{Sync mode, Bits[1:0]} & 0x00 \\
\hline \multicolumn{11}{|l|}{VCO, Reference and CLK1 Inputs} \\
\hline 0x1E0 & VCO divider & Don't care & \multicolumn{3}{|c|}{M divider, Bits[2:0]} & 0x00 \\
\hline \multicolumn{11}{|l|}{Other} \\
\hline 0x230 & Power-down & Don't care & Don't care & Don't care & Dist all powerdown & CLKIN powerdown & M divider powerdown & Distribution reference power-down & PLL powerdown & 0x00 \\
\hline 0x232 & IO_UPDATE & Don't care & IO_UPDATE & 0x00 \\
\hline
\end{tabular}

\section*{REGISTER MAP DESCRIPTIONS}

Table 29 through Table 49 provide a detailed description of each of the control register functions. The registers are listed by hexadecimal address.

Table 29. SPI Mode Serial Port Configuration
\begin{tabular}{|c|c|c|c|}
\hline Reg. Addr. (Hex) & Bits & Bit Name & Description \\
\hline \multirow[t]{5}{*}{0x000} & 7 & SDO active & \begin{tabular}{l}
Selects unidirectional or bidirectional data transfer mode. \\
0 : SDIO pin used for write and read; SDO is high impedance (default). \\
1: SDO used for read; SDIO used for write; unidirectional mode.
\end{tabular} \\
\hline & 6 & LSB first/address increase & \begin{tabular}{l}
SPI MSB or LSB data orientation. \\
0 : data-oriented MSB first; addressing decrements (default). \\
1: data-oriented LSB first; addressing increments.
\end{tabular} \\
\hline & 5 & Soft reset & Soft reset. 1 (self-clearing): soft reset; restores default value to internal registers. \\
\hline & 4 & Unused & Unused. \\
\hline & [3:0] & Mirror[7:4] & \begin{tabular}{l}
Bits[3:0] should always mirror Bits[7:4] so that it does not matter whether the part is in MSB or LSB first mode (see Register 0x000[6]). Set bits as follows: \\
Bit \(0=\) Bit 7 \\
Bit \(1=\) Bit 6 \\
Bit \(2=\) Bit 5 \\
Bit \(3=\) Bit 4
\end{tabular} \\
\hline 0x004 & 0 & Read back active registers & \begin{tabular}{l}
Select register bank used for a readback. 0 : reads back buffer registers (default). \\
1: reads back active registers.
\end{tabular} \\
\hline
\end{tabular}

Table 30. PFD Charge Pump

Table 31. REFA, REFB, REFC, B, N, and P Dividers
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & \multicolumn{4}{|l|}{Description} \\
\hline 0x011 & [7:4] & REFB divider output high cycles & \multicolumn{4}{|l|}{\begin{tabular}{l}
Divider high cycle word. Normally set to one-half desired divider division minus one: for example, \(D / 2-1\); therefore, for Divide \(=8\), set to \(0 \times 03(8 / 2-1)\). \\
Number of clock cycles (minus 1) of the divider input during which the divider output stays high. A value of \(0 \times 7\) means that the divider is low for eight input clock cycles (default: 0x0).
\end{tabular}} \\
\hline & [3:0] & REFB divider output low cycles & \multicolumn{4}{|l|}{\begin{tabular}{l}
Divider low cycle word. Normally set to one-half desired divider division minus one: for example, \(\mathrm{D} / 2-1\); therefore, for Divide \(=8\), set to \(0 \times 03(8 / 2-1)\). \\
Number of clock cycles (minus 1) of the divider input during which the divider output stays high. A value of \(0 \times 7\) means that the divider is low for eight input clock cycles (default: 0x0).
\end{tabular}} \\
\hline 0x012 & [7:4] & REFA divider output high cycles & \multicolumn{4}{|l|}{\begin{tabular}{l}
Divider high cycle word. Normally set to one-half desired divider division minus one: for example, D/2-1; therefore, for Divide \(=8\), set to \(0 \times 03(8 / 2-1)\). \\
Number of clock cycles (minus 1) of the divider input during which the divider output stays low. A value of \(0 \times 7\) means the divider is high for eight input clock cycles (default: 0x0).
\end{tabular}} \\
\hline & [3:0] & REFA divider output low cycles & \multicolumn{4}{|l|}{\begin{tabular}{l}
Divider low cycle word. Normally set to one-half desired divider division minus one: for example, D/2 -1 ; therefore, for Divide \(=8\), set to \(0 \times 03(8 / 2-1)\). \\
Number of clock cycles (minus 1) of the divider input during which the divider output stays high. A value of \(0 \times 7\) means that the divider is low for eight input clock cycles (default: 0x0).
\end{tabular}} \\
\hline 0x013 & [7:4] & B divider output high cycles & \multicolumn{4}{|l|}{\begin{tabular}{l}
Divider high cycle word. Normally set to one-half desired divider division minus one: for example, \(D / 2-1\); therefore, for Divide \(=8\), set to \(0 \times 03(8 / 2-1)\). \\
Number of clock cycles (minus 1) of the divider input during which the divider output stays low. A value of \(0 \times 7\) means the divider is high for eight input clock cycles (default: \(0 \times 0\)).
\end{tabular}} \\
\hline & [3:0] & B divider output low cycles & \multicolumn{4}{|l|}{\begin{tabular}{l}
Divider low cycle word. Normally set to one-half desired divider division minus one: for example, D/2-1; therefore, for Divide \(=8\), set to \(0 \times 03(8 / 2-1)\). \\
Number of clock cycles (minus 1) of the divider input during which the divider output stays high. A value of \(0 \times 7\) means that the divider is low for eight input clock cycles (default: 0x0).
\end{tabular}} \\
\hline 0x014 & [7:6] & Don't care & \multicolumn{4}{|l|}{Don't care.} \\
\hline & 5 & B divider bypass & \multicolumn{4}{|l|}{\begin{tabular}{l}
Bypasses and powers down the B divider; routes input to divider output. \\
0 : uses divider (default). \\
1: \(B\) divider is set to divide-by- 1 .
\end{tabular}} \\
\hline & 4 & REFB divider bypass & \multicolumn{4}{|l|}{\begin{tabular}{l}
Bypasses and powers down the divider; routes input to divider output. \\
0 : uses divider (default). \\
1: REFB divider is set to divide-by- 1 .
\end{tabular}} \\
\hline & 3 & REFA divider bypass & \multicolumn{4}{|l|}{\begin{tabular}{l}
Bypasses and powers down the divider; routes input to divider output. 0 : use divider (default). \\
1: REFA divider is set to divide-by-1.
\end{tabular}} \\
\hline & [2:0] & P divider prescaler & \multicolumn{4}{|l|}{P divider value (B divider prescaler).} \\
\hline & & & Bit 2 & Bit 1 & Bit 0 & Divider Value \\
\hline & & & 0 & 0 & 0 & 1(default) \\
\hline & & & 0 & 0 & 1 & \\
\hline & & & 0 & 1 & 0 & \\
\hline & & & 0 & 1 & 1 & \\
\hline & & & 1 & 0 & 0 & \\
\hline & & & 1 & 0 & 1 & \\
\hline & & & 1 & 1 & 0 & Static \\
\hline & & & 1 & 1 & 1 & Static \\
\hline 0x015 & 7 & Don't care & \multicolumn{4}{|l|}{Don't care.} \\
\hline & 6 & Reserved & \multicolumn{4}{|l|}{0 (default).} \\
\hline & 5 & Reserved & \multicolumn{4}{|l|}{0 (default).} \\
\hline & 4 & Reserved & \multicolumn{4}{|l|}{0 (default).} \\
\hline & 3 & \(B\) divider reset & \multicolumn{4}{|l|}{\begin{tabular}{l}
Resets B divider. \\
0 : normal operation (default). \\
1: holds B divider in reset.
\end{tabular}} \\
\hline
\end{tabular}

AD9525
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & Description \\
\hline & 2 & REFB divider reset & \begin{tabular}{l}
Resets REFB divider. \\
0 : normal (default). \\
1: holds REFB divider in reset.
\end{tabular} \\
\hline & 1 & REFA divider reset & \begin{tabular}{l}
Resets REFA divider. \\
0 : normal (default). \\
1: holds REFA divider in reset.
\end{tabular} \\
\hline & 0 & Reset all dividers & \begin{tabular}{l}
Resets REFA, REFB, \(B\) divider (\(B\) divider is part of \(N\) divider). \\
0 : normal (default). \\
1: holds REFA, REFB, B divider in reset.
\end{tabular} \\
\hline \multirow[t]{2}{*}{0x016} & 7 & REFC enable & \begin{tabular}{l}
Enables REFC path. \\
0 : disabled (default). \\
1: enables REFC path.
\end{tabular} \\
\hline & [6:0] & REFC divider & 7-bit REFC divider. Divide-by-1 to divide-by-127. 0000000, 0000001: both divide-by-1 (default: 0x00). \\
\hline
\end{tabular}

Table 32. Status Pin and Other
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reg. Addr. (Hex) & Bits & Bit Name & Descri & ption & & & & & & \\
\hline 0x017 & 7 & Charge pump pin to VDD_CP/2 & \multicolumn{8}{|l|}{\begin{tabular}{l}
Sets the charge pump pin to one-half of the VDD_CP supply voltage. \\
0 : charge pump normal operation (default). \\
1: charge pump pin set to VDD_CP/2.
\end{tabular}} \\
\hline & 6 & STATUS pin divider enable & \multicolumn{8}{|l|}{\begin{tabular}{l}
Enables STATUS pin divider. 0 : disabled (default). \\
1: enables divider.
\end{tabular}} \\
\hline & \multirow[t]{21}{*}{[5:0]} & \multirow[t]{21}{*}{STATUS output select} & \multicolumn{8}{|l|}{Selects the signal that appears at the STATUS pin. Register 0x017[6] must be set to 0 to for any mode identified as LVL.} \\
\hline & & & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 & Level or Dynamic Signal & Signal at STATUS Pin \\
\hline & & & \multirow[t]{8}{*}{O
0
0
0
0
0
0
0
0} & 0 & 0 & \[
0
\] & 0 & 0 & LVL & \\
\hline & & & & 0 & 0 & 0 & 0 & 1 & DYN & \begin{tabular}{l}
Ground, dc (default). \\
N divider output.
\end{tabular} \\
\hline & & & & 0 & 0 & 0 & 1 & 0 & LVL & Ground, dc. \\
\hline & & & & 0 & 0 & 0 & 1 & 1 & LVL & Ground, dc. \\
\hline & & & & 0 & 0 & 1 & 0 & 0 & LVL & Ground, dc. \\
\hline & & & & 0 & 0 & 1 & 0 & 1 & DYN & PFD up pulse. \\
\hline & & & & 0 & 0 & 1 & 1 & 0 & DYN & PFD down pulse. \\
\hline & & & & X & X & x & x & X & LVL & Ground (dc); for all other cases of 0XXXXX not specified. \\
\hline & & & & & & & & & & The selections that follow are the same as for the REF_MON pin. \\
\hline & & & 1 & 0 & 0 & 0 & 0 & 0 & LVL & Ground (dc). \\
\hline & & & 1 & 0 & 0 & 0 & 0 & 1 & DYN & REFA clock. \\
\hline & & & 1 & 0 & 0 & 0 & 1 & 0 & DYN & REFB clock. \\
\hline & & & 1 & 0 & 0 & 0 & 1 & 1 & DYN & Selected reference clock to PLL. \\
\hline & & & 1 & 0 & 0 & 1 & 0 & 0 & DYN & Unselected reference clock to PLL. \\
\hline & & & 1 & 0 & 0 & 1 & 0 & 1 & LVL & Both REFA and REFB clocks missing (active high). \\
\hline & & & 1 & 0 & 0 & 1 & 1 & 0 & LVL & Ground, dc. \\
\hline & & & 1 & 0 & 0 & 1 & 1 & 1 & LVL & REFA present (active high). \\
\hline & & & 1 & 0 & 1 & 0 & 0 & 0 & LVL & REFB present (active high). \\
\hline & & & 1 & 0 & 1 & 0 & 0 & 1 & LVL & (REFA present) AND (REFB present). \\
\hline
\end{tabular}

\section*{AD9525}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & \multicolumn{8}{|l|}{Description} \\
\hline & & & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 & Level or Dynamic Signal & Signal at STATUS Pin \\
\hline & & & 1 & 0 & 1 & 0 & 1 & 0 & LVL & (DLD) AND (selected reference present) AND (feedback clock present). \\
\hline & & & 1 & 0 & 1 & 0 & 1 & 1 & LVL & Feedback clock present (active high). \\
\hline & & & 1 & 0 & 1 & 1 & 0 & 0 & LVL & Selected reference (low: REFA, high: REFB). \\
\hline & & & 1 & 0 & 1 & 1 & 0 & 1 & LVL & DLD; active high. \\
\hline & & & 1 & 0 & 1 & 1 & 1 & 0 & LVL & N/A. \\
\hline & & & 1 & 0 & 1 & 1 & 1 & 1 & LVL & Ground (dc). \\
\hline & & & 1 & 1 & 0 & 0 & 0 & 0 & LVL & VDD3 (PLL power supply). \\
\hline & & & 1 & 1 & 0 & 0 & 0 & 1 & DYN & REFA clock. \\
\hline & & & 1 & 1 & 0 & 0 & 1 & 0 & DYN & \(\overline{\mathrm{REFB}}\) clock. \\
\hline & & & 1 & 1 & 0 & 0 & 1 & 1 & DYN & Selected reference to PLL. \\
\hline & & & 1 & 1 & 0 & 1 & 0 & 0 & DYN & \(\overline{\text { Unselected reference to PLL. }}\) \\
\hline & & & 1 & 1 & 0 & 1 & 0 & 1 & LVL & Status of selected reference (status of differential reference); active low. \\
\hline & & & 1 & 1 & 0 & 1 & 1 & 0 & LVL & Both reference clocks missing; active low. \\
\hline & & & 1 & 1 & 0 & 1 & 1 & 1 & LVL & REFA present (active low). \\
\hline & & & 1 & 1 & 1 & 0 & 0 & 0 & LVL & REFB present (active low). \\
\hline & & & 1 & 1 & 1 & 0 & 0 & 1 & LVL & \(\overline{\text { (REFA present) AND (REFB present). }}\) \\
\hline & & & 1 & 1 & 1 & 0 & 1 & 0 & LVL & \begin{tabular}{l}
(DLD) AND (selected reference present) \\
AND (feedback clock present); (active low).
\end{tabular} \\
\hline & & & 1 & 1 & 1 & 0 & 1 & 1 & LVL & \(\overline{\text { Feedback clock present }}\) \\
\hline & & & 1 & 1 & 1 & 1 & 0 & 0 & LVL & Selected reference (low = REFA, high = REFB); active low. \\
\hline & & & 1 & 1 & 1 & 1 & 0 & 1 & LVL & DLD (active low). \\
\hline & & & 1 & 1 & 1 & 1 & 1 & 0 & LVL & N/A. \\
\hline & & & 1 & 1 & 1 & 1 & 1 & 1 & LVL & VDD3 (PLL power supply). \\
\hline
\end{tabular}

Table 33. REF_MON Pin Control
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. \\
Addr. \\
(Hex)
\end{tabular} & Bits & \begin{tabular}{l}
Bit \\
Name
\end{tabular} & \multicolumn{7}{|l|}{Description} \\
\hline \multirow[t]{35}{*}{0x018} & [7:5] & Don't care & \multicolumn{7}{|l|}{Don't care.} \\
\hline & \multirow[t]{34}{*}{[4:0]} & \multirow[t]{34}{*}{REF_MON pin control} & \multicolumn{7}{|l|}{Selects the signal that is connected to the REF_MON pin.} \\
\hline & & & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 & Level or Dynamic Signal & Signal at REF_MON Pin \\
\hline & & & 0 & 0 & 0 & 0 & 0 & LVL & Ground (dc). \\
\hline & & & 0 & 0 & 0 & 0 & 1 & DYN & REFA clock. \\
\hline & & & 0 & 0 & 0 & 1 & 0 & DYN & REFB clock. \\
\hline & & & 0 & 0 & 0 & 1 & 1 & DYN & Selected reference clock to PLL. \\
\hline & & & 0 & 0 & 1 & 0 & 0 & DYN & Unselected reference clock to PLL. \\
\hline & & & 0 & 0 & 1 & 0 & 1 & LVL & Both reference clocks missing (active high). \\
\hline & & & 0 & 0 & 1 & 1 & 0 & LVL & Ground (dc). \\
\hline & & & 0 & 0 & 1 & 1 & 1 & LVL & Status REF A frequency (active high). \\
\hline & & & 0 & 1 & 0 & 0 & 0 & LVL & Status REF B frequency (active high). \\
\hline & & & 0 & 1 & 0 & 0 & 1 & LVL & (Status REF A frequency) AND (status REF B frequency). \\
\hline & & & 0 & 1 & 0 & 1 & 0 & LVL & (DLD) AND (status of selected reference) AND (status of feedback clock). \\
\hline & & & 0 & 1 & 0 & 1 & 1 & LVL & Status of feedback clock (active high). \\
\hline & & & 0 & 1 & 1 & 0 & 0 & LVL & Selected reference (low: REFA, high: REFB). \\
\hline & & & 0 & 1 & 1 & 0 & 1 & LVL & DLD; active high. \\
\hline & & & 0 & 1 & 1 & 1 & 0 & LVL & N/A. \\
\hline & & & 0 & 1 & 1 & 1 & 1 & LVL & Ground, dc. \\
\hline & & & 1 & 0 & 0 & 0 & 0 & LVL & VDD3 (PLL power supply). \\
\hline & & & 1 & 0 & 0 & 0 & 1 & DYN & \(\overline{\text { REFA. }}\) \\
\hline & & & 1 & 0 & 0 & 1 & 0 & DYN & \(\overline{\mathrm{REFB}}\). \\
\hline & & & 1 & 0 & 0 & 1 & 1 & DYN & \(\overline{\text { Selected reference to PLL. }}\) \\
\hline & & & 1 & 0 & 1 & 0 & 0 & DYN & \(\overline{\text { Unselected reference to PLL. }}\) \\
\hline & & & 1 & 0 & 1 & 0 & 1 & LVL & Status of selected reference (status of differential reference); active low. \\
\hline & & & 1 & 0 & 1 & 1 & 0 & LVL & Status of unselected reference (not available in differential mode); active low. \\
\hline & & & 1 & 0 & 1 & 1 & 1 & LVL & Status of REF A frequency (active low). \\
\hline & & & 1 & 1 & 0 & 0 & 0 & LVL & Status of REF B frequency (active low). \\
\hline & & & 1 & 1 & 0 & 0 & 1 & LVL & (Status of REFA frequency) AND (status of REFB frequency). \\
\hline & & & 1 & 1 & 0 & 1 & 0 & LVL & (DLD) AND (status of selected reference) AND (status of feedback clock). \\
\hline & & & 1 & 1 & 0 & 1 & 1 & LVL & Status of feedback clock (active low). \\
\hline & & & 1 & 1 & 1 & 0 & 0 & LVL & Selected reference (low: REFA, high: REFB); active low. \\
\hline & & & 1 & 1 & 1 & 0 & 1 & LVL & DLD (active low). \\
\hline & & & 1 & 1 & 1 & 1 & 0 & LVL & N/A. \\
\hline & & & 1 & 1 & 1 & 1 & 1 & LVL & VDD3 (PLL power supply). \\
\hline
\end{tabular}

Table 34. Lock Detect

Table 35. Reference Switchover and Monitors
\begin{tabular}{|c|c|c|c|}
\hline Reg. Addr. (Hex) & Bits & Bit Name & Description \\
\hline \multirow[t]{8}{*}{0x01A} & 7 & Enable feedback clock present monitor & \begin{tabular}{l}
Enables feedback clock monitor. The presence of a feedback clock is checked with the selected reference to the PLL. This monitor does not have a valid output if there is no reference to the PLL. 0 : disables monitor (default). \\
1: enables monitor.
\end{tabular} \\
\hline & 6 & Enable REFA present monitor & \begin{tabular}{l}
Enables Reference A clock monitor. The presence of the REFA clock is checked with the feedback clock to the PLL. This monitor does not have a valid output if there is no feedback clock to the PLL. Register \(0 \times 01 \mathrm{C}[4]=0\) (on) for monitor to work. \\
0 : disables monitor (default). \\
1: enables monitor.
\end{tabular} \\
\hline & 5 & Enable REFB present monitor & \begin{tabular}{l}
Enables Reference B clock monitor. The presence of the REFB clock is checked with the feedback clock to the PLL. This monitor does not have a valid output if there is no feedback clock to the PLL. \\
Register \(0 \times 01 \mathrm{C}[5]=0\) (on) for monitor to work. \\
0 : disables monitor (default). \\
1: enables monitor.
\end{tabular} \\
\hline & 4 & Disable switchover deglitch & Disables or enables the switchover deglitch circuit. 0 : enables switchover deglitch circuit (default). 1: disables switchover deglitch circuit. \\
\hline & 3 & Select REFB (manual register mode) & ```
If Register \(0 \times 01 \mathrm{~A}[1]=0\), selects reference for PLL.
0 : selects REFA.
1: selects REFB.
``` \\
\hline & 2 & Stay on REFB & \begin{tabular}{l}
Stays on REFB after switchover. \\
0 : returns to REFA automatically when REFA status is good again. \\
1: stays on REFB after switchover. Do not automatically return to REFA.
\end{tabular} \\
\hline & 1 & Use REF_SEL pin for reference switchover & \begin{tabular}{l}
If Register \(0 \times 01 \mathrm{~A}[0]=0\) (manual), sets method of PLL reference selection. \\
0: uses Register 0x01A[3] (default). \\
1: uses REF_SEL pin.
\end{tabular} \\
\hline & 0 & Enable automatic ref switchover & \begin{tabular}{l}
Automatic or manual reference switchover. 0 : manual reference switchover. \\
1: automatic reference switchover.
\end{tabular} \\
\hline
\end{tabular}

Table 36. Reserved
\begin{tabular}{l|l|l|l}
\hline \begin{tabular}{l} 
Reg. \\
Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & Description \\
\hline \(0 \times 01 \mathrm{~B}\) & {\([7: 0]\)} & Reserved & \begin{tabular}{l} 
Reserved. \\
\(0:\) default. All bits should be set to 0.
\end{tabular} \\
\hline
\end{tabular}

Table 37. PLL Block Power-Down
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. Addr. \\
(Hex)
\end{tabular} & Bits & Name & Description \\
\hline \multirow[t]{8}{*}{0x01C} & 7 & N divider ECL 2 CMOS power-down & \begin{tabular}{l}
Turns off the N divider's output clock. This stops the clock to the PFD and the frequency monitors. 0 : clock on (default). \\
1: clock off.
\end{tabular} \\
\hline & 6 & N divider power-down & \begin{tabular}{l}
N divider power-down. \\
0 : N divider on (default). \\
1: N divider off.
\end{tabular} \\
\hline & 5 & REFB Divider ECL 2 CMOS power-down & \begin{tabular}{l}
This bit stops the clock to the frequency monitors for REFB. If this bit is disabled, the automatic reference switchover does not operate. In some configurations, enabling the REFB divider ECL 2 CMOS may increase reference spurs on clock outputs. \\
0 : on. \\
1: off (default).
\end{tabular} \\
\hline & 4 & REFA Divider ECL 2 CMOS power-down & \begin{tabular}{l}
This bit stops the clock to the frequency monitors for REFA. If this bit is disabled, the automatic reference switchover does not operate. In some configurations, enabling the REFA Divider ECL 2 CMOS may increase reference spurs on clock outputs. \\
0 : on (default). \\
1: off.
\end{tabular} \\
\hline & 3 & REFB divider power-down & \begin{tabular}{l}
Powers down REFB divider. The REFB input receiver is still powered up. \\
0 : REFB divider on (default). \\
1: REFB divider off.
\end{tabular} \\
\hline & 2 & REFA divider power-down & \begin{tabular}{l}
Powers down REFA divider. The REFA input receiver is still powered up. \\
0 : REFA divider on (default). \\
1: REFA divider off.
\end{tabular} \\
\hline & 1 & REFB channel power-down & \begin{tabular}{l}
Powers down REFB channel. The REFB input receiver is powered down. \\
0 : REFB channel on. \\
1: REFB channel off (default).
\end{tabular} \\
\hline & 0 & REFA channel power-down & \begin{tabular}{l}
Powers down REFA channel. The REFA input receiver is powered down. \\
0 : REFA channel on (default). \\
1: REFA channel off.
\end{tabular} \\
\hline
\end{tabular}

Table 38. PLL Readback
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & Description \\
\hline \multirow[t]{6}{*}{0x01F} & [7:5] & Unused & Unused \\
\hline & 4 & Selected reference & \begin{tabular}{l}
Shows the reference used by the PLL \\
0: REFA \\
1: REFB
\end{tabular} \\
\hline & 3 & Status feedback clock & \begin{tabular}{l}
Status of the feedback clock, does not have a valid output unless \(0 \times 01 \mathrm{~A}[7]=1\) \\
0 : missing \\
1: present
\end{tabular} \\
\hline & 2 & Status REFB & \begin{tabular}{l}
Status of Reference B clock, does not have a valid output unless \(0 \times 01 \mathrm{~A}[5]=1\) and \(0 \times 01 \mathrm{C}[5]=0\) \\
0 : missing \\
1: present
\end{tabular} \\
\hline & 1 & Status REFA & \begin{tabular}{l}
Status of Reference A clock, does not have a valid output unless \(0 \times 01 \mathrm{~A}[6]=1\) and \(0 \times 01 \mathrm{C}[4]=0\) \\
0 : missing \\
1: present
\end{tabular} \\
\hline & 0 & Digital lock detect (DLD) & \begin{tabular}{l}
Digital lock detect \\
0: PLL not locked \\
1: PLL locked
\end{tabular} \\
\hline
\end{tabular}

Table 39. LVPECL Drivers OUT0
\begin{tabular}{l|l|l|l}
\hline \begin{tabular}{l} 
Reg. \\
Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & \multicolumn{2}{|l}{} \\
\hline 0xOF0 & {\([7: 5]\)} & Don't care & Description \\
\cline { 3 - 5 } & 4 & \begin{tabular}{l} 
Power down Channel 0 and \\
Channel 1
\end{tabular} & \begin{tabular}{l} 
Powers down Channel 0 and Channel 1 \\
0: enabled (default) \\
\\
\end{tabular} \\
& & 1: power-down
\end{tabular}

Table 40. LVPECL Drivers OUT1
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reg. Addr. (Hex) & Bits & Bit Name & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{9}{*}{0x0F1} & [7:5] & Don't care & \multicolumn{3}{|l|}{Don't care} \\
\hline & 4 & Reserved & \multicolumn{3}{|l|}{Reserved, write 0} \\
\hline & 3 & Don't care & \multicolumn{3}{|l|}{Don't care} \\
\hline & [2:1] & OUT1 level & Bit 1 & Bit 0 & \(\mathrm{V}_{\text {OD }}(\mathrm{mV})\) \\
\hline & & & 0 & 0 & 400 \\
\hline & & & 0 & 1 & 600 \\
\hline & & & 1 & 0 & 780 (default) \\
\hline & & & & & \\
\hline & 0 & OUT1 driver power-down & \multicolumn{3}{|l|}{0: enabled (default) 1: power-down} \\
\hline
\end{tabular}

Table 41. LVPECL Drivers OUT2


Table 42. LVPECL Drivers OUT3


Table 43. PECL Drivers OUT4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reg. Addr. (Hex) & Bits & Bit Name & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{6}{*}{0x0F4} & [7:5] & Don't care & \multicolumn{3}{|l|}{Don't care} \\
\hline & 4 & Power down Channel 4 and Channel 5 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Powers down Channel 4 and Channel 5 \\
0 : enabled (default) \\
1: power-down
\end{tabular}} \\
\hline & 3 & Don't care & \multicolumn{3}{|l|}{Don't care} \\
\hline & [2:1] & OUT4 level & Bit 1 & Bit 0 & Vod (mV) \\
\hline & & & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0 \\
& 1 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 600 \\
& 780 \text { (default) } \\
& 960
\end{aligned}
\] \\
\hline & 0 & OUT4 driver power-down & \multicolumn{3}{|l|}{\begin{tabular}{l}
0 : enabled (default) \\
1: power-down
\end{tabular}} \\
\hline
\end{tabular}

\section*{AD9525}

Table 44. LVPECL Drivers OUT5


Table 45. LVPECL Drivers OUT6
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{9}{*}{0x0F6} & [7:5] & & \multicolumn{3}{|l|}{Don't care} \\
\hline & 4 & Power down Channel 6 and Channel 7 & \multicolumn{3}{|l|}{\begin{tabular}{l}
Power down Channel 6 and Channel 7 \\
0 : enabled (default) \\
1: power-down
\end{tabular}} \\
\hline & 3 & & \multicolumn{3}{|l|}{Don't care} \\
\hline & [2:1] & OUT6 level & Bit 1 & Bit 0 & \(\mathrm{V}_{\text {OD }}(\mathrm{mV})\) \\
\hline & & & 0 & 0 & 400 \\
\hline & & & 0 & 1 & 600 \\
\hline & & & 1 & 0 & 780 (default) \\
\hline & & & 1 & 1 & 960 \\
\hline & 0 & OUT6 driver power-down & \multicolumn{3}{|l|}{\begin{tabular}{l}
0: enabled (default) \\
1: power-down
\end{tabular}} \\
\hline
\end{tabular}

Table 46. LVPECL Drivers OUT7


AD9525

Table 47. SYNC_OUT Control
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reg. Addr. (Hex) & Bits & Bit Name & \multicolumn{4}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{0x0F8} & [7:5] & Don't care & \multicolumn{4}{|l|}{Don't care.} \\
\hline & 4 & SYNC_OUT channel power-down & \multicolumn{4}{|l|}{\begin{tabular}{l}
Powers down SYNC_OUT channel. 0 : enabled. \\
1: power-down (default).
\end{tabular}} \\
\hline & 3 & Sync polarity & \multicolumn{4}{|l|}{Polarity LVPECL mode. 0 : noninverting (default). 1: inverting.} \\
\hline & \multirow[t]{2}{*}{[2:1]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SYNC_OUT } \\
& \text { level }
\end{aligned}
\]} & Bit 1 & Bit 0 & \(\mathrm{V}_{\text {OD }}\) ( mV ) & \\
\hline & & & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 0 \\
1 \\
0 \\
1
\end{array}
\] & \[
\begin{aligned}
& 400 \text { (default) } \\
& 600 \\
& 780 \\
& 960
\end{aligned}
\] & \\
\hline & 0 & SYNC_OUT driver power-down & \multicolumn{4}{|l|}{\begin{tabular}{l}
0 : enabled (default). \\
1: powers down LVPECL SYNC_OUT driver.
\end{tabular}} \\
\hline 0x0F9 & [7:5] & Don't care & \multicolumn{4}{|l|}{Don't care.} \\
\hline & 4 & Polarity CMOS mode & \multicolumn{4}{|l|}{Polarity CMOS mode. This bit is also used in conjunction with Register 0x0F8[3] when the driver is in CMOS mode (Register 0x0F9[1] = 1).} \\
\hline & & & \multicolumn{2}{|l|}{Reg. 0x0F9[4]} & Reg. 0x0F8[3] & SYNC OUT/S \\
\hline & & & \multicolumn{2}{|l|}{\[
\begin{array}{|l}
\hline 0 \\
0 \\
1 \\
1
\end{array}
\]} & \[
\begin{array}{|l|}
\hline 0 \\
1 \\
0 \\
1
\end{array}
\] & Noninverting Inverting/inv Noninverting Inverting/non \\
\hline & \multirow[t]{3}{*}{[3:2]} & \multirow[t]{3}{*}{Enable CMOS drivers} & \multicolumn{4}{|l|}{Sets the CMOS driver output configuration when Register 0x0F9[1] \(=1\).} \\
\hline & & & Bit 3 & Bit 2 & SYNC_OUT & \(\overline{\text { SYNC_OUT }}\) \\
\hline & & & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 0 \\
1 \\
0 \\
1
\end{array}
\] & Tristate On Tristate On & \begin{tabular}{l}
Tristate \\
Tristate On On
\end{tabular} \\
\hline & 1 & CMOS mode & \multicolumn{4}{|l|}{\begin{tabular}{l}
Use CMOS mode instead of LVPECL mode for SYNC_OUT. 0 : LVPECL mode (default). \\
1: CMOS mode.
\end{tabular}} \\
\hline & 0 & Sync out resampling edge select & \multicolumn{4}{|l|}{\begin{tabular}{l}
SYNC_OUT resample edge select. Selects the M divider output edge used to resample the sync clock. 0 : use rising edge of \(M\) clock (default). \\
1: use falling edge of \(M\) clock.
\end{tabular}} \\
\hline 0x190 & [7:0] & Sync clock S divider & \multicolumn{4}{|l|}{16-bit sync S divider, Bits[7:0] (LSB). Cycles of reference clock \(=\) S Divider Bits[15:0] + 1. For example, [15:0] \(=0\) is 1 reference clock cycles, [15:0] = 1 is 2 reference clock cycles ... [15:0] = 65535 is 65536 reference clock cycles.} \\
\hline 0x191 & [7:0] & Sync clock S divider & \multicolumn{4}{|l|}{16-bit sync S divider, Bits[15:8] (MSB).} \\
\hline 0x192 & [7:5] & Don't care & \multicolumn{4}{|l|}{Don't care.} \\
\hline & 4 & Sync enable & \multicolumn{4}{|l|}{\begin{tabular}{l}
0: disable SYNC_OUT (default). \\
1: Enable SYNC_OUT. \\
Note: Self-clearing for single shot sync.
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{[3:2]} & \multirow[t]{2}{*}{Sync source} & Bit 1 & Bit 0 & \multicolumn{2}{|l|}{Select Reference for SYNC Clock} \\
\hline & & & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 0 \\
1 \\
0 \\
1 \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{REF: reference input (default) FB: PLL feedback N divider Power-down: power down SYNC Power-down: power down SYNC} \\
\hline & \multirow[t]{2}{*}{[1:0]} & \multirow[t]{2}{*}{Sync mode} & Bit 1 & Bit 0 & \multicolumn{2}{|l|}{Sync Mode} \\
\hline & & & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 0 \\
1 \\
0 \\
1
\end{array}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Single shot (default) \\
Periodic \\
Pseudorandom \\
Pseudorandom
\end{tabular}} \\
\hline
\end{tabular}

\section*{AD9525}

Table 48. VCO, Reference, and CLK Inputs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. \\
Addr. \\
(Hex)
\end{tabular} & Bits & Bit Name & \multicolumn{4}{|l|}{Description} \\
\hline \multirow[t]{11}{*}{0x1E0} & [7:3] & Don't care & Don't & & & \\
\hline & \multirow[t]{10}{*}{[2:0]} & \multirow[t]{10}{*}{M divider} & \multicolumn{4}{|l|}{M divider value.} \\
\hline & & & Bit 2 & Bit 1 & Bit 0 & Divider Value \\
\hline & & & 0 & 0 & 0 & 1 \\
\hline & & & 0 & 0 & 1 & 2 \\
\hline & & & 0 & 1 & 0 & 3 \\
\hline & & & 0 & 1 & 1 & 4 \\
\hline & & & 1 & 0 & 0 & 5 \\
\hline & & & 1 & 0 & 1 & 6 \\
\hline & & & 1 & 1 & 0 & 7 \\
\hline & & & 1 & 1 & 1 & 8 \\
\hline
\end{tabular}

Table 49. Other
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Reg. Addr. \\
(Hex)
\end{tabular} & Bits & Name & Description \\
\hline \multirow[t]{6}{*}{0x230} & [7:5] & Don't care & Don't care. \\
\hline & 4 & Dist all power-down & \begin{tabular}{l}
Powers down all of distribution. Puts all drivers in safe power-down mode. 0 (default): enabled. \\
1: power-down.
\end{tabular} \\
\hline & 3 & CLKIN power-down & \begin{tabular}{l}
Powers down CLKIN, \(\overline{\mathrm{CLKIN}}\). \\
0 (default): enabled. \\
1: power-down.
\end{tabular} \\
\hline & 2 & M divider power-down & Powers down \(M\) divider. 0 (default): enabled. 1: power-down. \\
\hline & 1 & Distribution reference power-down & \begin{tabular}{l}
Power down distribution reference. This bit should be asserted only when the drivers do not need the safe power-down mode guidelines. \\
0 (default): enabled. \\
1: power-down.
\end{tabular} \\
\hline & 0 & PLL power-down & \begin{tabular}{l}
Power down PLL. \\
0 (default): enabled. \\
1: power-down.
\end{tabular} \\
\hline \multirow[t]{2}{*}{232} & [7:1] & Don't care & Don't care. \\
\hline & 0 & IO_UPDATE & \begin{tabular}{l}
This bit must be set to 1 b to transfer the contents of the buffer registers into the active registers. This happens on the next SCLK rising edge. This bit is self-clearing; that is, it does not have to be set back to 0 . \\
1 (self-clearing): update all active registers to the contents of the buffer registers.
\end{tabular} \\
\hline
\end{tabular}

\section*{APPLICATIONS INFORMATION}

\section*{FREQUENCY PLANNING USING THE AD9525}

The AD9525 is a highly flexible PLL. When choosing the PLL settings and version of the AD9525, the following guidelines should be kept in mind.

The AD9525 has three frequency dividers: the reference (or R) divider, the feedback (or N ) divider, and the M divider. When trying to achieve a particularly difficult frequency divide ratio requiring a large amount of frequency division, some of the frequency division can be done by either the \(M\) divider or the N divider, thus allowing a higher phase detector frequency and more flexibility in choosing the loop bandwidth.

Choosing a nominal charge pump current in the middle of the allowable range as a starting point allows the designer to increase or decrease the charge pump current and, thus, allows the designer to fine-tune the PLL loop bandwidth in either direction.
ADIsimCLK is a powerful PLL modeling tool that can be downloaded from www.analog.com. It is very accurate in determining the optimal loop filter for a given application.

\section*{USING THE AD9525 OUTPUTS FOR ADC CLOCK APPLICATIONS}

Any high speed ADC is extremely sensitive to the quality of the sampling clock of the AD9525. An ADC can be thought of as a sampling mixer, and any noise, distortion, or time jitter on the clock is combined with the desired signal at the analog-to-digital output. Clock integrity requirements scale with the analog input frequency and resolution, with higher analog input frequency applications at \(\geq 14\)-bit resolution being the most stringent. The theoretical SNR of an ADC is limited by the ADC resolution and the jitter on the sampling clock. Considering an ideal ADC of infinite resolution, where the step size and quantization error can be ignored, the available SNR can be expressed, approximately, by
\[
S N R(\mathrm{~dB})=20 \log \left(\frac{1}{2 \pi f_{A} t_{J}}\right)
\]
where:
\(f_{A}\) is the highest analog frequency being digitized. \(t_{J}\) is the rms jitter on the sampling clock.

Figure 34 shows the required sampling clock jitter as a function of the analog frequency and effective number of bits (ENOB).


Figure 34. SNR and ENOB vs. Analog Input Frequency
For more information, see the AN-756 Application Note, Sampled Systems and the Effects of Clock Phase Noise and Jitter, and the AN-501 Application Note, Aperture Uncertainty and ADC System Performance, at www.analog.com.
Many high performance ADCs feature differential clock inputs to simplify the task of providing the required low jitter clock on a noisy PCB. Distributing a single-ended clock on a noisy PCB can result in coupled noise on the sampling clock. Differential distribution has inherent common-mode rejection that can provide superior clock performance in a noisy environment. The differential LVPECL outputs of the AD9525 enable clock solutions that maximize converter SNR performance.
The input requirements of the ADC (differential or single-ended, logic level termination) should be considered when selecting the best clocking/converter solution.

\section*{LVPECL CLOCK DISTRIBUTION}

The LVPECL outputs (because they are open emitter) require a dc termination to bias the output transistors. The simplified equivalent circuit in Figure 22 shows the LVPECL output stage.

In most applications, a LVPECL far-end Thevenin termination (see Figure 35) or Y-termination (see Figure 36) is
recommended. In both cases, VS of the receiving buffer should match VS_DRV (VS_DRV = VDD3). If it does not match, ac coupling is recommended (see Figure 37).


Figure 35. DC-Coupled 3.3 V LVPECL Far-End Thevenin Termination


Figure 36. DC-Coupled 3.3 V LVPECL Y-Termination


Figure 37. AC-Coupled LVPECL with Parallel Transmission Line
LVPECL Y-termination is an elegant termination scheme that uses the fewest components and offers both odd- and even-mode impedance matching. Even-mode impedance matching is an important consideration for closely coupled transmission lines at high frequencies. Its main drawback is that it offers limited flexibility for varying the drive strength of the emitter-follower LVPECL driver. This can be an important consideration when driving long trace lengths but is usually not an issue.
Thevenin-equivalent termination uses a resistor network to provide \(50 \Omega\) termination to a dc voltage that is below Vol of the LVPECL driver. In this case, VS_DRV on the AD9525 should equal \(V_{S}\) of the receiving buffer. Although the resistor combination shown results in a dc bias point of VS_DRV - 2 V , the actual common-mode voltage is VS_DRV - 1.3 V because there is additional current flowing from the AD9525 LVPECL driver through the pull-down resistor.

\section*{SYNC_OUT DISTRIBUTION}

The SYNC_OUT driver of the AD9525 can be configured as CMOS drivers. When selected for use as CMOS drivers, each output becomes a pair of CMOS outputs, each of which can be individually turned on or off and set as inverting or noninverting. Be sure to note the skew difference of using CMOS mode vs. LVPECL mode.

When single-ended CMOS clocking is used, refer to the guidelines presented in the following paragraphs.
Point-to-point connections should be designed such that each driver has only one receiver, if possible. Connecting outputs in this manner allows for simple termination schemes and minimizes ringing due to possible mismatched impedances on the output trace. Series termination at the source is generally required to provide transmission line matching and/or to reduce current transients at the driver.
The value of the resistor is dependent on the board design and timing requirements (typically \(10 \Omega\) to \(100 \Omega\) is used). CMOS outputs are also limited in terms of the capacitive load or trace length that they can drive. Typically, trace lengths less than 3 inches are recommended to preserve signal rise/fall times and signal integrity.


Figure 38. Series Termination of CMOS Output
Termination at the far end of the PCB trace is a second option. The SYNC_OUT CMOS output of the AD9525 does not supply enough current to provide a full voltage swing with a low impedance resistive, far-end termination, as shown in Figure 39. The far-end termination network should match the PCB trace impedance and provide the desired switching point. The reduced signal swing may still meet receiver input requirements in some applications. This can be useful when driving long trace lengths on less critical nets.


Figure 39. CMOS Output with Far-End Termination
Because of the limitations of single-ended CMOS clocking, consider using differential outputs when driving high speed signals over long traces. The AD9525 offers SYNC_OUT LVPECL outputs that are better suited for driving long traces where the inherent noise immunity of differential signaling provides superior performance for clocking converters.

\section*{OUTLINE DIMENSIONS}


THE EXPOSED PAD, REFER TO
FUNCTION DESCRIPTIONS
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.


COMPLIANT TO JEDEC STANDARDS MO-220-WKKD.
@
\(\stackrel{\omega}{\circ}\)
\(\stackrel{\rightharpoonup}{c}\)
Figure 40. 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
\(7 \mathrm{~mm} \times 7 \mathrm{~mm}\) Body, Very Very Thin Quad
CP-48-4
Dimensions shown in millimeters

\section*{ORDERING GUIDE}
\begin{tabular}{l|l|l|l}
\hline Model \(^{1}\) & Temperature Range & Package Description & Package Option \\
\hline AD9525BCPZ & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 48-Lead Lead Frame Chip Scale Package (LFCSP_WQ) & CP-48-4 \\
AD9525BCPZ-REEL7 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 48-Lead Lead Frame Chip Scale Package (LFCSP_WQ) & CP-48-4 \\
AD9525/PCBZ & & Evaluation Board, No VCO & \\
AD9525/PCBZ-VCO & & Evaluation Board, 2950 MHz VCO Installed & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1} \mathrm{Z}=\) RoHS Compliant Part.
}

\section*{NOTES}```

